

Enfermedades Infecciosas y Microbiología

Órgano de la Asociación Mexicana de Infectología y Microbiología Clínica, AC, y del Consejo Mexicano de Certificación en Infectología AC.

http://www.amimc.org.mx

Indizada en IMBIOMED http://www.imbiomed.com

Revista registrada en Latindex, LILACS (Literatura Latinoamericana y de Caribe de la Salud), BIBLIOMEX, CENDS, Secretaría de Salud, Subdirección de Investigación IMSS. PUIS, Periodica, Índice de Revistas Latinoamericanas en Ciencias-UNAM: EMBASE, EXCERPTA MEDICA,

Asociación Mexicana de Infectología y Microbiología Clínica, AC

vol. 35, núm. 3, julio-septiembre 2015

Mesa Directiva 2014-2016

Dr. Sergio Lazo de la Vega Presidente

Dr. Luis Fernando Pérez González Secretario General Dra. Noris Pavia Ruz Vicepresidente Dra. Patricia Cornejo Juárez Secretaria Académica

Dr. José Donís Hernández *Tesorero*

Dr. Juan Carlos Tinoco *Microbiología*

Dr. Luis Enrique Soto Ramírez

VIH

Dra. Dora Patricia Cornejo Juárez Infecciones Nosocomiales

Dr. José Donís Hernández

Antibióticos

Comité Ejecutivo

Dr. José Sifuentes Osornio Dr. Eduardo Rodríguez N. Dr. Guillermo Ruiz-Palacios

Dr. José I. Santos Preciado Dr. Fortino Solórzano Santos

Consejo Mexicano de Certificación en Infectología AC

Mesa Directiva 2012-2015

Dr. Fortino Solórzano Santos *Presidente* Dr. Juan Carlos Tinoco Favila Vicepresidente Dra. Ma. Guadalupe Miranda Novales *Tesorera*

Enfermedades Infecciosas y Microbiología, Año 35, núm. 3, julio-septiembre 2015, es una Publicación trimestral editada por Grapondi de México, SC, Aniceto-Ortega 822, Col. Del Valle, Del. Benito Juárez, CP 03100, México, DF. Tel.(55) 5669 9416. www.amimc.org.mx/revista.HTM.

Editor responsable: Fortino Solórzano Santos. Reserva de Derechos al Uso Exclusivo Núm. 04-2012-101111502500-203, otorgado por el Instituto Nacional del Derecho de Autor, ISSN: 1405-0994. Responsable de la última actualización de este número, Asociación Mexicana de Infectlogía y Microbiología Clínica, A.C., AMIMC, Montecito 38, piso24, of. 37, Col. Nápoles, Deleg. Benito Juárez, CP 03810, México, D.F.

Las opiniones expresadas por los autores no necesariamente reflejan la postura del editor de la publicación. Toda correspondencia deberá dirigirse al editor, Fortino Solórzano Santos, Calzada de Tlalpan 4800, Colonia Belisario Domínguez, Sección XVI, Delegación Tlalpan, CP 14080, México, DF, Tel./fax 52 (55) 4000 3058. Correo electrónico: solorzanof@terra.com.mx. Para suscripciones llame al teléfono 52 (55) 5659 9416.

El contenido de los artículos firmados es responsabilidad de sus autores. Todos los derechos reservados de acuerdo con la Convención Latinoamericana y la Convención Internacional de Derechos de Autor. Toda correspondencia relacionada con esta publicación puede dirigirse a: amimc.AC@gmail.com. Visite nuestra página de internet http://www.amimc.org.mx.

Diseño gráfico: Diana A Solórzano Barrios. Corrección: Luz María Méndez Alvarez.

Enfermedades Infecciosas y Microbiología

Publicación oficial de la Asociación Mexicana de Infectología y Microbiología Clínica A.C.

Dr. Fortino Solórzano Santos Editor

Dra. Ma. Guadalupe Miranda Novales Coeditor Lic. Luz Elena González
Coordinación Administrativa

Comité Editorial

Dra. Celia Alpuche Aranda Dr. José Luis Arredondo García Dr. Carlos J. Conde González Dr. Sergio Esparza Ahumada Dra. Ma. del Carmen Martínez García Dra. Ma. del Rayo Morfín Otero

Dr. Onofre Muñoz Hernández Dra. Noris Pavía Ruz Dr. Federico J. Ortíz Ibarra Dr. Samuel Ponce de León Rosales Dr. Eduardo Rodríguez Noriega Dr. Guillermo Ruiz Palacios Dr. José Ignacio Santos Preciado Dr. José Sifuentes Osorio Dr. José Luis Soto Hernández Dr. Juan Carlos Tinoco Favila Dr. Alberto Villaseñor Sierra Dra. Patricia Volkow Fernández

Brasil

Dr. Dorival Duarte de Lima Dr. Alexandro Casio Torres de Carvalho

Colombia

Dra. Ma. Lilia Díaz Betancourt Dr. Pio López

Costa Rica Dr. Adriano Arguedas

Cuba

Dr. Éric Martínez Dra. Aliana Llop Hernández Dr. Ángel Goyenechea Hernández Dra. Ma. Isabel Martínez Mota

Chile Dra. Valeria Prado

España

Dr. Antonio Rodríguez Noriega Dr. Alberto Pahissa

Estados Unidos

Dr. George A. Jacoby Dr. Carlos del Río Chiriboga

Guatemala

Dr. Carlos Ríos Álvarez

Honduras

Dra. Lourdes Araujo

Inglaterra

Dr. Armando González

Panamá

Dr. Eduardo Ortega Barria

Perú

Dr. Eduardo Gotuzzo H.

República Dominicana

Dr. José Brea del Castillo

Venezuela

Dr. Antonio González Mata

Enfermedades Infecciosas y Microbiología vol. 35, núm. 3, julio-septiembre 2015

ÍNDICE

81 | • Editorial Pavia Ruz N

ARTÍCULOS ORIGINALES

83 Co-infecciones secundarias y SIDA: un enfoque metaanalítico

Pertuz Belloso, S.B.

• El peso de la obesidad en la letalidad de la Influenza A (H1N1): un estudio de casos y controles Romo Martínez, J.E.

92 | González Barrera, J.A. Herrera Solís, M.E. Valencia Espinosa, S.C.

• Perfil de resistencia a antimicrobianos de E. 97 coli aislada de pacientes con infección urinaria nosocomial en un hospital de segundo nivel de atención en la ciudad de México

Ramírez Sandoval, M.L.P. Varela Ramírez, M.A. Colunga Guillén, J.G. Salcedo Romero, R.

Hernández Gómez, V. Santiago Santiago, R. Roldan Vences, A.

ACTUALIDADES

101 Bacteremia nosocomial: descripción situacional en un hospital de tercer nivel

Araujo Meléndez, J. Espinoza Martínez, J.E. Ruiz González, J.M. Fragoso Morales, L.E.

CASO CLÍNICO

105

• Encefalitis y enfermedad cutánea neonatal por Virus Herpes Simple tipo 2. Reporte de un caso

Gil Veloz, M. Castro Macías, I. Vázquez-Briseño, .J Castellanos Martínez, J. M. Carrales Cuellar, R. Tovar Sánchez, J.A. Solórzano Santos, F. INDFX

 From the editors Pavia Ruz N

ORIGINAL RESEARCH ARTICLES

83 Secondary co-infections and AIDS: A meta-analytic approach Pertuz Belloso, S.B.

> • The burden of obesity in the lethality of influenza A (H1N1): A case-control study

Romo Martínez, J.E. 92 | González Barrera, J.A. Herrera Solís, M.E. Valencia Espinosa, S.C.

• Antimicrobial resistance profile in *E. coli* isolates 97 from patients with nosocomial urinary tract infection from a second care level hospital in Mexico City

> Ramírez Sandoval, M.L.P. Varela Ramírez, M.A. Colunga Guillén, J.G. Salcedo Romero, R.

Hernández Gómez, V. Santiago Santiago, R. Roldan Vences, A.

REVIEW ARTICLES

101 Nosocomial bacteremia: descriptive study in a tertiary level hospital

Araujo Meléndez, J. Espinoza Martínez, J.E. Ruiz González, J.M. Fragoso Morales, L.E.

CLINICAL CASE

105|

 Neonatal encephalitis and skin disease by Herpes simplex virus type 2. Case report

Gil Veloz, M. Castro Macías I Vázquez-Briseño, .J Castellanos Martínez, J. M. Carrales Cuellar, R. Tovar Sánchez, J.A. Solórzano Santos, F.

Editorial Infecciones por oportunistas en personas infectadas con VIH/SIDA

Dr. Noris Pavía Ruz Clínica para niños con VIH/SIDA, UNAM/Hospital General de México. Unidad de Investigación en Medicina Experimental, Universidad Nacional Autónoma de México

From the editors
Opportunistic infections
in patients infected with HIV/AIDS

Las infecciones por oportunistas (IO) y diversos tipos de cáncer son complicaciones importantes de la infección por el Virus de Inmunodeficiencia Humana (VIH). Las IO causan morbilidad, hospitalización y disminuyen la sobrevida de las personas infectadas con el virus. La disminución del número de células CD4+ es una de las causas principales de la inmunodeficiencia que conduce al desarrollo de IO en esta población.

Al inicio de la epidemia, en Estados Unidos de Norteamérica y en Europa, la incidencia global de IO ocurrió entre el 60 y 100 de los pacientes; con cifras tan elevadas como 13.3 episodios por cada 100 personas por año para *P. jiroveci* o tasas relativamente bajas como la tuberculosis con 0.4 episodios por cada 100 personas por año.

En México, la frecuencia de las IO en las diferentes series estudiadas durante los primeros años fue de 76 a 95 %.

El doctor Martín del Campo-Rodríguez y col. realizaron una revisión de infecciones oportunistas en pacientes con SIDA en series clínicas en México de 1981 al 2001 observando que fue similar la presentación de IO; en la mayoría de las publicaciones la infección por *Candida sp.*, principalmente mucocutánea y esofágica fueron las más frecuentes, hasta alcanzar una prevalencia del 65 % de los casos. En segundo lugar la neumonía por *P. jiroveci*, entre 18 y 24 %. En tercer lugar la infección por *Cryptosporidium sp.*, 12 % en promedio en todas las series.

Los estudios de autopsia realizados en México entre 1984 y 1991 mostraron que las principales causas de muerte fueron enfermedad por CMV, tuberculosis, neumonía por *P. jiroveci* y toxoplasmosis cerebral.

En un estudio realizado en México por Villasís y col. en pacientes adultos con SIDA reportaron un cambio en la prevalencia de las IO, disminución de la neumonía por *P. jiroveci* y de sarcoma de Kaposi, y un aumento en la incidencia de enfermedad por CMV, todo ello atribuible a la mayor sobrevida de los pacientes con SIDA, a la utilización de profilaxis contra *P. jiroveci* y al uso de terapia antirretroviral; así mismo reportaron mayor sobrevida después del diagnóstico de la infección por VIH de 11.7 meses entre 1984 y 1988 a 34.2 meses entre 1993 y 1995.

Al inicio de los años noventa, el uso de profilaxis, inmunizaciones y mejores estrategias para el manejo agudo de las IO contribuyó a mejorar la calidad de vida y aumentar la sobrevida de los pacientes infectados con el VIH. Además, la utilización de tratamientos antirretrovirales potentes ha sido el factor más importante para disminuir la mortalidad relacionada con las IO en personas infectadas con el VIH.

Aunque está disponible el TAR, las IO continúan causando morbilidad y mortalidad por tres principales causas:

- a. Las personas infectadas con el VIH desconocen su diagnóstico y las IO pueden ser un indicador inicial de la
- b. Algunos pacientes no toman ARV por problemas psicosociales entre otros
- c. Algunas personas que reciben ARV no tienen adecuada respuesta inmunológica y virológica

Magis y col. en un estudio descriptivo, transversal, realizado en México y basado en la revisión de los registros contenidos dentro del SALVAR (53 200 personas con TAR en la Secretaria de Salud entre 2008 y 2013) observaron que el 49 % de los pacientes iniciaron tardíamente el TAR definido por la medición basal de células CD4 al momento del diagnóstico de VIH el cual fue menor a 200 células o en presencia de un evento definitorio de SIDA o ambos; aunque mencionan que se observó una reducción global del 10 %, 55.8 % en el 2008 a 45.6 % en el 2013. Otro estudio realizado en Latinoamérica, que incluyo 6 países, mostró un inicio tardío del TAR del 76 % de 1999 a 2010.

En un reporte publicado por Crabtree y col. en una clínica especializada en VIH, observaron una prevalencia de diagnóstico tardío de VIH del 61 %, sin encontrar reducción en el periodo de tiempo analizado (2001-2008).

En Estados Unidos, aproximadamente una tercera parte de los pacientes tienen menos de 200 células CD4 en el momento del diagnóstico del VIH.

Reportes en otros países han descrito prevalencia de diagnóstico tardío de VIH alrededor del 50 %.

Martínez Onraet y col. realizaron un estudio retrospectivo de causas de muerte de pacientes infectados con VIH durante la hospitalización entre el 2010 y 2013 en tres hospitales de la ciudad de México e identificaron 128 muertes con una mediana CD4+ de 47 células, 51 % con menos de 6 meses de haber sido diagnosticados y 40.5 % sin tratamiento antirretroviral, las principales causas de muerte fueron Linfoma no Hodgkin (32 %),

sarcoma de Kaposi (19 %), tuberculosis (17.9 %), 9 casos de criptococosis (6 %) e histoplasmosis (5.8 %); resultados que son diferentes a lo reportado en países con ingresos altos en los que predominan como causa de muerte las enfermedades cardiovasculares, hepáticas o neoplasias no asociadas a SIDA.

La coinfección del VIH y TB es un problema grave. Cada patógeno favorece la infección por el otro. En 2013, se estima que 1.1 millones (13 %) de las 9 millones de personas que desarrollaron TB en el mundo fueron VIH positivas. Aunque el número de muertes ha disminuido paulatinamente desde el 2004 todavía es un número importante, corresponde al 25 % de las estimadas 1.5 millones de muertes de personas con VIH/SIDA.

La relativa frecuencia de enfermedades por oportunistas puede variar en cada país y en diferentes áreas geográficas en un mismo país.

En un meta análisis realizado por Pertuz-Belloso, publicado en esta revista, la autora describe la prevalencia de tuberculosis, toxoplasmosis y sarcoma de Kaposi en pacientes infectados con el VIH en tratamiento antirretroviral del 2010 al 2014 y menciona que estas infecciones oportunistas y el sarcoma de Kaposi empiezan a disminuir como consecuencia de nuevas opciones de tratamiento antirretroviral, sin embargo las tasas de mortalidad por SIDA siguen siendo importantes a nivel global.

Las infecciones por oportunistas aún continúan ocurriendo en la era del tratamiento antirretroviral efectivo; es importante establecer estrategias para el diagnóstico de la infección por VIH en etapas tempranas para administrar el tratamiento antirretroviral y así disminuir y evitar la progresión hacia el SIDA, así como el desarrollo de infecciones oportunistas y neoplasias relacionadas.

- 1. Chang C, Crane M, Zhou J, Mina M, Post J, Cameron B. A., y col. HIV and co-infections. *Immunol Rev.* 2013; 254: 114–142.
- Global Tuberculosis Report 2014, World Health Organization. http://www.who.int/tb/publications/global_report/en/17.
- 3. Harrington M. From HIV to tuberculosis and back again: a tale of activism in 2 pandemics. *Clin Infect Dis*. 2010; 50(3): S260–S266.
- 4. Magis-Rodríguez CL, Villafuerte-García A, Cruz-Flores RA y col. Inicio tardío de terapia antirretroviral en México. Salud Pública Méx. 2015; 57(2): 127-134.
- 5. Martín del Campo-Rodríguez LE y Sifuentes-Osornio J. Infecciones oportunistas en el síndrome de inmunodeficiencia adquirida: La historia en México a 20 años del inicio de la epidemia. *Rev Invest Clin.* 2004; 56 (2): 169-180.
- Martín-Onraet A, Piñeirua-Menéndez A, Perales-Martínez D y col. Mortalidad hospitalaria en pacientes con infección por VIH: a diez años del acceso universal al TARAA en México. Salud Pública Méx. 2015; 57(2): 163-170.
- 7. Panel on Opportunistic Infections in HIV-Infected Adults and Adolescents. Guidelines for the prevention and treatment of opportunistic infections in HIV-infected adults and adolescents, Recommendations from the Centers for Disease Control and Prevention, the National Institutes of Health, and the HIV Medicine Association of the Infectious Diseases Society of America. 2015 https://aidsinfo.nih.gov/contentfiles/lvguidelines/adult_oi.pdf.
- 8. Villasīs-Keever A, Rangel-Frausto MS, Ruíz-Palacios G y col. Clinical manifestations and survival trends during the first 12 years of the AIDS epidemic in Mexico. *Arch Med Res.* 2001; 32(1): 62-65.
- Zanoni BC and Gandhi RT. Update on Opportunistic Infections in the era of Effective Antiretroviral Therapy. Infect Dis Clin N Am 2014; 28: 501-518.

Pertuz Belloso, Silvana Beatriz*

Co-infecciones secundarias y SIDA: un enfoque metaanalítico

Secondary co-infections and AIDS: A meta-analytic approach

Fecha de aceptación: junio 2015

Resumen

La calidad de vida y el tiempo de sobrevida de los pacientes seropositivos para VIH y que desarrollan el síndrome de la inmunodeficiencia adquirida (SIDA) se pueden ver comprometidos debido a varios factores, entre ellos, las infecciones secundarias o co-infecciones. Las co-infecciones que han sido reportadas con mayor frecuencia son la tuberculosis, la toxoplasmosis y la infección viral originada por el Herpes virus Humano-8, conocida como el sarcoma de Kaposi. En este estudio metaanalítico se revisó la prevalencia de estas infecciones secundarias de los pacientes con SIDA que recibieron la terapia antirretroviral, en varios países según los reportes desde el 2010 al 2014. Varios de estos estudios muestran que las infecciones secundarias en pacientes inmunocomprometidos por VIH empiezan a disminuir en estos últimos 4 años como consecuencia del mejoramiento de las terapias antirretrovirales, sin embargo las tasas de mortalidad por SIDA siguen siendo importantes a nivel global. Algunos de los trabajos analizados adjudican estas tasas de mortalidad a las enfermedades crónicas degenerativas que parecen avanzar rápidamente entre estos pacientes.

Palabras clave: VIH, SIDA, toxoplasmosis, tuberculosis, sarcoma de Kaposi, herpes virus humano 8.

Abstract

Quality and time of life for HIV patients that developed acquired immune deficiency syndrome (AIDS) are committed due to many factors such as secondary infections or co-infections. The major co-infections reported are tuberculosis, toxoplasmosis, and Kaposi Sarcome or Human Herpesvirus-8 infection. In this work the secondary infections prevalence is revised by meta-analysis from AIDS patients treated by antiretroviral therapy in many countries according to reports for 2010-2014. Many reports show the decreased secondary infections from HIV immune-deficient patients in latest years due to antiretroviral therapy optimization, but nevertheless the mortality rate by AIDS is high at the global level. Some works analyzed here link up these mortality rates to chronicles and degenerative diseases with fast developed between patients.

Keywords: VIH, AIDS, Toxoplasmosis, Tuberculosis, Sarcome of Kaposi, HHV-8.

Introducción

La incidencia de los casos del virus de la inmunodeficiencia humana (VIH) es alta en todos los países del orbe, siendo la mortalidad por el desarrollo del síndrome de la inmunodeficiencia adquirida (SIDA) alta entre los pacientes seropositivos. La calidad de vida, el transcurso de la enfermedad, la recuperación del estatus inmunológico tras las terapias antirretrovirales, así como las causas asociadas a la mortalidad de estos pacientes son debatibles y aún no muy

claras. En este estudio se analizaran las causas de la mortalidad de los pacientes con SIDA asociada principalmente a enfermedades infecciosas secundarias. Desde el punto de vista inmunológico, se parte del hecho de que el VIH usa como correceptor al CCR5 de los linfocitos T CD4 para la invasión del sistema inmunológico generando con ello la inmunodeficiencia. La progresión del SIDA depende de varios factores, entre ellos, los factores genéticos del huésped.

Correspondencia: Dra. Silvana Pertuz Belloso

Facultad de Ciencias, departamento de Biología Comparativa, UNAM, Av. Universidad 3000, Circuito Exterior sin núm. Coyoacán, CU, 04510, ciudad de México, DF. Tel. 52+55+37308309.

Dirección electrónica: silvanapertuz@comunidad.unam.mx

^{*}Grupo Escuela de Medicina Intermédica-UNAM Hospital Intermédica de Hidalgo, Pachuca, Hidalgo, México. Departamento de Biología Comparativa/ Facultad de Ciencias. UNAM,

Dennis v col. 1 muestran que existe una predisposición que determina muchas veces la progresión de la enfermedad en los diferentes grupos humanos. En este sentido, los grupos latinoamericanos tienen a progresar rápidamente al SIDA con respecto a otros grupos humanos. Las enfermedades infecciosas secundarias o degenerativas que se puedan adquirir en el avance del SIDA parecen estar asociadas incluso a los grupos raciales. Los latinoamericanos presentan una alta predisposición a la tuberculosis o a la toxoplasmosis más que otros grupos humanos. El tropismo del VIH hacia los receptores del sistema inmunológico se ha establecido como un factor importante para la progresión de la enfermedad. Se han reportado al menos tres cepas de virus de acuerdo con el tipo de interacción que establecen con los receptores de la red de quimiocinas, virus R5, R5X4, y X4; en el transcurso de la infección pueden ocurrir cambios en la afinidad por los receptores de quimiocinas, y aumentar la unión por CXCR4 de monocitos, desregulando aún más la respuesta inmunitaria.² Otro factor que contribuye a la progresión del SIDA es el polimorfismo o pequeñas mutaciones en la secuencia del sitio de binding de los receptores de quimiocinas. Los polimorfismos se han reportado en varios receptores del sistema inmunológico, principalmente CCR5-Δ32, CCR2b-641, RANTES In1.1C, SDF-1 3'A, IL-10-5'592A y IL-4-589T, estableciendo un perfil inmunológico de la progresión lenta o rápida del SIDA. En una buena proporción, los individuos que presentan los polimorfismos CCR5-Δ32, o CCR2b-641 tardan más en desarrollar SIDA. Los individuos con los polimorfismos en las interleucinas IL-10 e IL-4 desarrollan rápidamente SIDA.^{3,4}Los pacientes que desarrollan la enfermedad con mayor rapidez presentan un perfil inmunológico con altos niveles de IL-10 e IL-4, como pronóstico de una respuesta inmunológica de supresión. Se ha determinado un perfil inmunológico asociado con la progresión rápida de esta enfermedad, así que los individuos que tienden a una rápida progresión despliegan niveles altos de CXCL10 (IP-10), CXCL9, IL-18 e IL-10 alta carga viral y una cuenta baja de linfocitos T CD4.5,6 La mayoría de los pacientes infectados con VIH desarrollan algún tipo de infección secundaria o co-infección con otros virus, bacterias o protozoarios durante el tratamiento antirretroviral, comúnmente antes de los 6 meses del inicio de la terapia; muchos de estos pacientes fallecen. Los factores que se asocian a la pérdida del paciente con SIDA están también asociados con la resistencia que puedan desarrollar las cepas circulantes del VIH-1 a algunos de los componentes del coctel antirretroviral. Actualmente, la población con SIDA que recibe tratamiento con antirretrovirales presenta resistencia, lo cual limita aún más la recuperación de estos pacientes.

Métodos

Para fines del metaanálisis de los casos de infecciones secundarias en pacientes con SIDA en varios contextos se realizó básicamente una búsqueda de la literatura de los temas seleccionados en PubMed durante 2010-2014: -Enfermedades Emergentes y Re-emergentes: Tuberculosis (TB), Toxoplasmosis (TX), y sarcoma de Kaposi (KS).

Lineamientos de inclusión y exclusión de información

Los criterios de inclusión de las investigaciones rastreadas fueron seleccionados de acuerdo con los siguientes parámetros:

Inclusión

El rastreo de los artículos de investigación fue realizado del 2010-2014, en el contexto del VIH/SIDA v las infecciones secundarias. Los trabajos seleccionados para el estudio de metaanálisis guardaron una relación con investigaciones de corte clínico con pacientes totales con SIDA, y los pacientes que desarrollaron alguna enfermedad secundaria, señaladas para efectos del estudio metaanalítico como tuberculosis, toxoplasmosis, y sarcoma de Kaposi, en números totales. Aquí también es importante señalar que los estudios tenían que estar definidos dentro del marco de los países, de manera tal que "países africanos, latinoamericanos y europeos" fue también un criterio de inclusión. Los artículos además tenían que especificar el estatus inmunológico de los pacientes, y preferentemente que hubiesen recibido terapia antirretroviral.

Exclusión

- a. Los artículos que no estuvieran dentro del rango de tiempo establecido se eliminaron del metaanálisis.
- b. Los estudios y artículos que no incluyeran básicamente los parámetros esenciales establecidos para este trabajo: la población con SIDA y el número de casos con alguna enfermedad co-infecciosa.

Extracción de datos, análisis estadístico y metagnálisis

Siguiendo los criterios establecidos para este metaanálisis y revisión sistemática acerca del SIDA y las co-infecciones, fueron seleccionados 113 artículos y estudios, de los cuales, como se menciona posteriormente (para efectos de este estudio y siguiendo los parámetros establecidos) solo fueron tomados 30 artículos (citados en el cuadro 1), cuyos datos fueron analizados estadísticamente, según se describe a continuación. Los datos extraídos de las publicaciones seleccionadas, e introducidos en una matriz, fueron los siguientes: número de pacientes con SIDA tomados para el estudio, número de pacientes que desarrollaron alguna co-infección. Junto a estos parámetros se incluyeron datos como el país o grupo étnico, el estatus inmunológico del paciente (número de linfocitos T por unidad de medida), los meses de tratamiento de terapia antirretroviral a la que fueron sometidos los pacientes. Estos datos fueron procesados para la estadística descriptiva básica y luego para el metaanálisis por ANOVA en el programa openEpi (versión 3.03). Los datos que se encontraron estadísticamente significativos fueron procesados en el programa MedCalc (versión 15) para el metaanálisis, y la definición de las tendencias centrales de los datos en gráficos de Forest.

Resultados

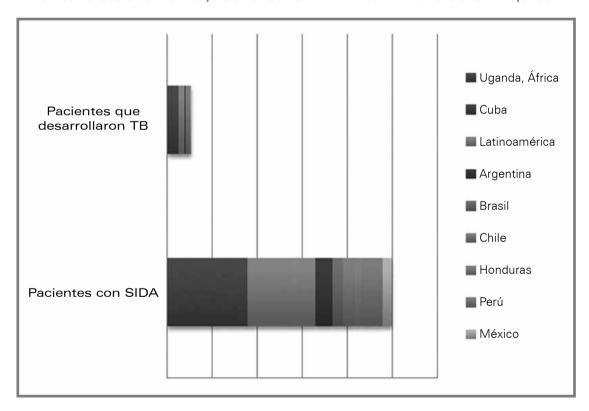
Las tasas de mortalidad y la expectativa de vida de los pacientes con SIDA entre los latinoamericanos no superan los 10 años de vida después del desarrollo de la enfermedad. Los índices de mortalidad en esta población son altos en México y otros países, pese al tratamiento antirretroviral. Colombia, Ecuador y Costa Rica, son los países latinoamericanos que presentan la mayor cantidad de defunciones en la población con SIDA. Entre las causas asociadas a la muerte de la población que desarrolla SIDA a nivel global, se analizaron varias enfermedades infecciosas. La tuberculosis, la toxoplasmosis y neurotoxoplasmosis, y el sarcoma de Kaposi que fueron po-

pularmente asociadas a la mortalidad en este grupo. El foco de los datos se centró en el sarcoma de Kaposi presentado el mayor número de casos y de datos de investigación de pacientes con SIDA que se co-infectan o mueren por esta causa en varios países del mundo (cuadro 1). La toxoplasmosis aparece prevalentemente en los países europeos y en EEUU con el mayor número de reportes de casos de pacientes con SIDA que desarrollaron algún tipo de toxoplasmosis, especialmente la neurotoxoplasmosis (cuadro 1). La tuberculosis fue una infección con mayor prevalencia en los pacientes con SIDA latinoamericanos y africanos (cuadro 1).

Cuadro 1
Casos de pacientes con SIDA que desarrollaron alguna infección secundaria

Autor	País	Cantidad pacientes	Recuento de linfocitos t	Meses posterapia ARV	Meses pre terapia ARV	Pacientes que desarrollaron co-infección	Porcentaje
		Т	uberculosis	s (TB)			
Herman y col; 2012 ⁷	Uganda, África	3,549	57	6	8	511	28
Mederos y col; 2014 ⁸	Cuba	1	200	60	48	1	0
Cortés y col; 2013 ⁹	Latinoamérica	3,006	ND	6	6	253	8.41
MEDIA		829.3454	37.3818	10.036	7.9272	106.527	6.3289090
DE		1161.93	60.53	17.6	114.21	154.50	9.104
		To	oxoplasmos	sis (TX)			
Rodríguez y col; 2013 ¹⁰	Colombia	1	600 células/µl	72	ND	1	0
Rostami y col; 2014 ¹¹	Irán	94	>500 células/µl	ND	ND	18	19
Yojanes et al, 2014 ¹²	Etiopia, África	170	>200 células/µl	ND	ND	150	88.2
Ting-Yi y col; 2014 ¹³	Taiwán	224	ND	ND	ND	30	13.39
Machala y col; 2013 ¹⁴	Praga	1130	>479 células/µl	6	2	14	1.23
Xavier y col; 2013 ¹⁵	Brasil	250	405 células/µl	ND	ND	9	3.6
Xiao y col; 2013 ¹⁶	China	884	511 células/µl	ND	ND	23	3.5
Basavaprabhu y col; 2012 ¹⁷	India	3	125 células/µl	12	24	2	66.6
Gheuens y col; 2011 ¹⁸	EEUU	1	53 células/µl	ND	ND	1	100
Suktana y col; 2012 ¹⁹	Tailandia	61	100 células/µl	84	84	8	13.11
Osunkalu y col; 2011 ²⁰	Nigeria		320 células/µl	ND	ND	174	45.78
Lejeune y col; 2011 ²¹	España	90	<200 células/µl	ND	>1	25	27.7
MEDIA		277	203	14	16	37	15
DE		316.9476	150.257	29.193	28.68	56.8944	23.87

Autor	País	Cantidad pacientes	Recuento de linfocitos t	Meses posterapia ARV	Meses pre terapia ARV	Pacientes que desarrollaron co-infección	Porcentaje
		;	Sarcoma de	Kaposi			
Kouri y col; 2012 ²²	Cuba	90	ND	ND	ND	90	100
Von Braun y col; 2014 ²³	Suiza	1	521 células/µl	ND	6	1	0
Nelwan y col; 2014 ²⁴	Indonesia	1	18 células/µl	ND	1.5	1	0
Pittore y col; 2015 ²⁵	Italia	1	207 células/µl	ND	15	1	0
Saldariaga y col; 2012 ²⁶	Colombia	4230	ND	ND	ND	110	2.6
Trairat y col; 2012 ²⁷	Francia	15	>200 células/ <i>µ</i> l	6	68	15	100
Hirai y col; 2012 ²⁸	Japón	1	221 células/µl	ND	ND	1	0
Avilés y col; 2010 ²⁹	México	1	ND	ND	ND	1	0
Nelson y col; 2013 ³⁰	Zimbabwe	110	>250 células/µl	6	18	31	28.18
Ogoina y col; 2013 ³¹	Nigeria	1	297 células/µl	ND	4	1	0
Luu y col; 2013 ³²	EEUU	1112	>344 células/µl	ND	ND	6	0.53
Unemori y col; 2013 ³²	EEUU	19	>300 células/µl	ND	ND	24	79.16
Gopal y col; 2014 ³³	EEUU	1	ND	ND	ND	1	0
Fernands, 2012 ³⁴	Portugal	25	268 células/µl	ND	ND	13	52
Castilho y col; 2012 ³⁵	Brasil	2004	>270 células/µl	ND	42	57	2.69
Tanon y col; 2012 ³⁶	África	1017	ND	ND	ND	32	3.4
MEDIA		539	181	1	10	24	22
DE		1141.592	159.801	2.178819	19.14	33.89	36.391


La tuberculosis se presentó en pacientes que entraban a los tratamientos con la terapia antirretroviral, y en el caso de un reporte en Cuba, el paciente presentó un estatus inmunológico comprometido (< 200 células/ml), y con al menos 60 meses de post-tratamiento con la terapia antirretroviral.8 Los datos recopilados muestran que un bajo porcentaje de los pacientes con SIDA desarrollaron tuberculosis, con el más alto número de casos en Uganda (África), y en Perú (Latinoamérica) (figura 1),7-9 con diferencias estadísticamente significativas (p < 0.0001; F = 5.317). Un análisis mucho más completo fue realizado con la determinación de los casos de toxoplasmosis en los pacientes con SIDA. Los casos reportados de los pacientes con SIDA que desarrollaron esta infección fueron sometidos a terapia antirretroviral al menos de 6 meses, y presentaron un estatus inmunológico comprometido (< 200 células/ml). La mayoría de los pacientes que desarrollaron toxoplasmosis padecieron de neurotoxoplasmosis, y sólo un bajo porcentaje de pacientes presentaron

toxoplasmosis ocular. La toxoplasmosis presentó una tendencia similar a la tuberculosis al registrar un bajo porcentaje en pacientes con SIDA que entraban a la terapia (figura 2; p < 0.001; F = 16.01)¹⁰⁻²¹ exceptuando Etiopia (África) en la cual la relación entre los pacientes con SIDA (sometidos a terapia antirretroviral) y los que fueron infectados con toxoplasmosis fue alta.12 Los pacientes con SIDA que desarrollaron algunas de estas co-infecciones se recuperaron después de los tratamientos específicos, y la tasa de mortalidad por estas infecciones es muy baja (figura 4, Gráfica Forest). En cuanto al sarcoma de Kaposi, los casos son mucho más extendidos tanto en los países del primer mundo como en aquéllos en desarrollo económico. La prevalencia de KS en los pacientes con SIDA que entran a la terapia antirretroviral también es baja, aunque en estos casos sí se presentaron defunciones asociadas directamente con sarcoma de Kaposi infeccioso, y en el estudio realizado en Francia, todos los pacientes que entraron al estudio desarrollaron la enfermedad, marcando

la regularidad con la que ocurre esta co-infección entre los pacientes con SIDA (figura 3);²²⁻³⁷ y al igual que en los otros cuadros infecciosos, los pacientes presentan menos de 200 células/µl. En el gráfico de Forest se puede observar que de todos los casos de pacientes con SIDA (> 1000 pacientes) sólo unos 100 pacientes desarrollaron alguna de estas co-infecciones (figura 4); y estas diferencias son estadísticamente significativas (p < 0.001; F = 7.45). En general, con el advenimiento de las terapias antirretrovirales estas co-infecciones han disminuido entre la población que padece SIDA, de lo cual se puede deducir que aunque siguen siendo enfermedades infecciosas de importancia para esta población se han marcado ya avances en el control de las mismas, y por ende en la supervivencia de estos pacientes. El estatus inmunológico de los pacientes que entran a la terapia antirretroviral está asociado evidentemente con el desarrollo de algunas de estas enfermedades infecciosas. Los pacientes sometidos a la terapia antirretroviral usualmente presentan conteos celulares de menos de 200 células/µl. Las terapias según los estudios recopilados se implementan hasta los 84 meses dependiendo de la respuesta de los pacientes a la terapia y de la recuperación del estatus inmunológico tomando como

ejemplos los casos de toxoplasmosis, y de sarcoma de Kaposi por presentarse mucho más generalizada, y con datos mucho más consistentes, que en los casos de tuberculosis; encontramos que los casos de toxoplasmosis son más prevalentes en Nigeria (África), Irán (Medio Oriente), España y Berlín (Europa). Los meses de tratamiento antirretroviral variaron en los estudios analizados, sin embargo, una tendencia a la infección por toxoplasmosis fue detectada antes de los 6 meses de post-tratamiento con ART en varios de los países analizados. La infección por toxoplasmosis en los pacientes con SIDA puede también ocurrir en tratamientos con los antirretrovirales prologados por más de 2 años, no obstante en muchos de los países no se tuvieron registros de los meses de terapia, como lo fueron México y Brasil, y algunos países asiáticos (cuadro 1). Los casos de sarcoma de Kaposi han sido reportados en pacientes con SIDA que recibieron terapias antirretrovirales prologadas más de 2 años. La prevalencia de esta confección es más extendida en todo el mundo. Países como Indonesia, Nigeria, Zimbabue, Brasil y Cuba han reportado la mayor cantidad de casos de sarcoma de Kaposi (cuadro 1).

Figura 1
Casos de tuberculosis en los pacientes con el síndrome de inmunodeficiencia adquirida

Los datos provenientes de trabajos seleccionados como fue especificado en "Materiales y métodos" fueron agrupados y analizados estadísticamente. Los estudios seleccionados para el análisis de la tuberculosis en los últimos 4 años muestran que la prevalencia de la tuberculosis es importante en África (3 000 casos aproximadamente) y América Latina (3 000 casos); tanto en África como en Latinoamérica los estudios evaluados sobre una población de 6 000 casos de pacientes con SIDA, de los cuales 3 000 casos se localizaron en África y alrededor de 1 000 a 2 000 casos se localizaron en América del Sur, Centro y Norte América. Entre los países latinoamericanos, Argentina y Perú presentaron el mayor número de casos de pacientes con SIDA. No obstante, el número de casos de pacientes con SIDA que cursaron una tuberculosis tras el tratamiento antirretroviral es muy bajo. TB: tuberculosis

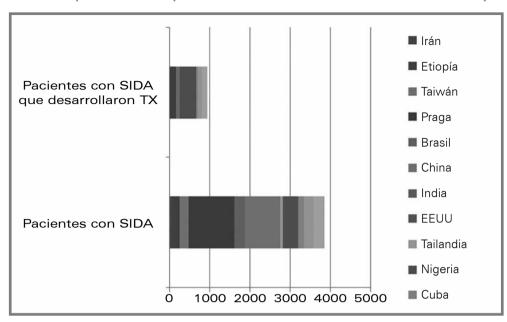


Figura 2
Casos de toxoplasmosis en los pacientes con el síndrome de inmunodeficiencia adquirida

Los datos provenientes de trabajos seleccionados como fue especificado en "Materiales y métodos" fueron agrupados y analizados estadísticamente. Los estudios seleccionados para el análisis de la toxoplasmosis en los últimos 4 años muestran que la toxoplasmosis está más extendida en todo el mundo en los pacientes con SIDA incluyendo los países del primer mundo. En Nigeria (África) y China se presentaron el mayor número de casos de neurotoxoplasmosis en la población con SIDA. Los estudios recopilados muestran una población sobre los 4 000 casos de pacientes con SIDA, y una baja proporción de la población con SIDA desarrolló neurotoxoplasmosis. TX: toxoplasmosis.

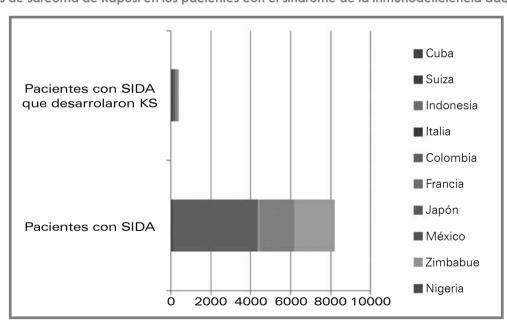


Figura 3

Casos de sarcoma de Kaposi en los pacientes con el síndrome de la inmunodeficiencia adquirida

Los datos provenientes de trabajos seleccionados como fue especificado en "Materiales y métodos2 fueron agrupados y analizados estadísticamente. Los estudios seleccionados para el análisis de la infección viral por HHV-8 en los últimos 4 años muestran una prevalencia de sarcoma de Kaposi más global incluyendo a los países del primer mundo. Japón y Colombia presentaron el mayor número de casos de esta infección entre la población con SIDA. Los estudios recopilados muestran una población sobre los 8 000 casos de pacientes con SIDA, y una baja proporción de la población con SIDA desarrolló el sarcoma de Kaposi, en estos casos a diferencia de los reportados con las otras infecciones secundarias los pacientes no lograron la recuperación y fallecieron. KS: sarcoma de Kaposi.



Figura 4
Metaanálisis de la información recopilada

Los datos provenientes de trabajos seleccionados como fue especificado en "Materiales y métodos" fueron agrupados y analizados estadísticamente, y un gráfico de Forest fue realizado. El análisis de Forest (metaanálisis) muestra una medida central de 100 casos de la población con SIDA que desarrolló alguna co-infección. De los casi 10 000 casos de pacientes con SIDA menos de 100 reportan alguna infección secundaria en las infecciones analizadas. ER: enfermedad infecciosa secundaria en pacientes con SIDA.

Discusión

El metaanálisis muestra que las enfermedades infecciosas son un factor importante asociado a la mortalidad de la población seropositiva que desarrolla SIDA. Las enfermedades que clásicamente se consideraba que impactaban considerablemente la salud de la población infectada con VIH fueron tuberculosis, toxoplasmosis y varias co-infecciones virales, entre ellas principalmente, el sarcoma de Kaposi ocasionado por el HHV8, y de las cuales se encontró que aunque la prevalencia sigue siendo importante en varios países del mundo, no están completamente asociadas con las tasas de mortalidad que se observa en algunos lugares, especialmente en Latinoamérica. Las combinaciones de antirretrovirales suministrados a estos pacientes con SIDA han contribuido grandemente a la reducción de la mortalidad por estos factores. No obstante, con base en este análisis, se observa que el sarcoma de Kaposi figura como una de las enfermedades infecciosas que más afecta la salud de los pacientes con SIDA a nivel global. Es interesante señalar que la toxoplasmosis le sigue en importancia, en su forma de neurotoxoplasmosis, mostrando una alta prevalencia incluso en varios de los países europeos. La tuberculosis fue más prevalente en países latinoamericanos y africanos que en el resto del mundo.38,39 La tuberculosis en pacientes con SIDA ha sido relacionada con la susceptibilidad tras ser sometidos a terapia antirretroviral y a la resistencia de las cepas de Mycobacterium tuberculosis a los cocteles clásicos usados para su tratamiento. En dos de los estudios analizados se encontró que los pacientes sometidos a terapia antirretroviral por más de 5 años, y una baja respuesta a la misma predispone a este tipo de infecciones y a una detección tardía de la infección.8 Hermans y col.7 plantean que en muchas ocasiones no se hace un diagnóstico previo completo de los pacientes con SIDA que entran a la terapia antirretroviral. Algunas enfermedades como la toxoplasmosis, se ha mencionado que son más comunes en poblaciones afroamericanas y latinas, en su forma de neurotoxoplasmosis. 10, 40 Pocos casos tienen otras localizaciones (Brasil, un caso de toxoplasmosis ocular y en Nigeria un caso asintomático de la infección). 15, 20 Desde el punto de vista del estatus inmunológico, los pacientes con SIDA que desarrollan toxoplasmosis o tuberculosis se alteran en forma más frecuente con el tratamiento antirretroviral en fases iniciales. 14, 17, 21 Aunque hay que mencionar que tras el diagnóstico y la terapia especifica en cada caso el paciente se recupera, las tasas de mortalidad por esta infección es baja con respecto a otras co-infecciones de tipo viral, como es el caso de sarcoma de Kaposi. La co-infección con HHV8-VIH/SIDA tiene un riesgo acumulado de entre 30 a 50 % de desarrollar sarcoma de Kaposi en población seropositiva con más de 10 años de padecer esta enfermedad. Un estudio realizado con varios pacientes con VIH, relaciona el estatus inmunológico con el desarrollo del sarcoma de Kaposi, en pacientes con bajos niveles de T CD4, además de ser más propensos al sarcoma, aquellos con niveles menores de 125

de T CD4, el 40 % no sobreviven. En más de 40 % presentan co-infecciones con otros virus, especialmente HHV8/HHV1. En los países desarrollados la introducción de terapias antirretrovirales altamente activas ha reducido radicalmente su incidencia; pero en países africanos, donde la prevalencia de ambos virus es elevada, y los recursos sanitarios escasos. el sarcoma de Kaposi se presenta en más del 50 % de los casos. En los estudios realizados destacan los casos de sarcoma de Kaposi en Francia, en donde todos los pacientes que entraron a la terapia desarrollaron esta infección.²⁴ También destacan por su alta prevalencia Cuba, EEUU, Portugal y Zimbabue que tienen una alta prevalencia del sarcoma de Kaposi v por ende un mal estatus inmunológico. 28,30,37 Hav casos de esta co-infección en pacientes con SIDA asociados al envejecimiento del sistema inmunológico, como en pacientes de 50 años de edad o más. 29 Tanon v col.37 establecen que la falla en la respuesta a la terapia antirretroviral es uno de los factores por los cuales los pacientes con esta co-infección pueden no recuperarse y fallecer. En algunos casos la influencia racial puede ser un factor de riesgo, pues hay que aclarar que existen casos de sarcoma de Kaposi entre sujetos no infectados con VIH, especialmente entre pacientes judíos de edad avanzada, corroborando que esta co-infección está más asociada a la inmunosupresión.40

Conclusión

Los pacientes con VIH/SIDA tienden a desarrollar algunas de las co-infecciones; tuberculosis, toxoplasmosis y sarcoma de Kaposi después del tratamiento prolongado con las terapias antirretrovirales. No obstante, estas enfermedades pueden ser controladas en estos pacientes con las terapias adecuadas, lo cual ha reducido el impacto sobre la salud de los pacientes con SIDA. Actualmente, el enfoque debe dirigirse a la detección temprana de los patógenos asociados a las infecciones secundarias que afectan a estos pacientes y asegurar un tratamiento antirretroviral efectivo y oportuno.

Colaboradores

Grupo Escuela de Medicina Intermédica-UNAM: Baños M, García E, Juárez G, Pérez A, Sánchez J, Rodríguez E, Sosa L, Silva F, Labra E, Elizalde Y, Pereira E, Ramírez H, Sánchez A, Guzmán M, García L, Del Ángel M, Ossimar A, Salinas D, Becerril F, Islas M, Rodríguez E, Romero S, y Agüeros A.

Agradecimientos

La doctora Silvana Pertuz recibió un financiamiento de investigación por parte de la Secretaria de Educación Pública de los Estados Unidos Mexicanos bajo el formato de PROMEP en cuyo marco se generó esta publicación de difusión científica como producto del Foro "VIH, SIDA y política", llevado a cabo en el Hospital Intermédica del 1° al 4 de agosto de 2013.

- Dennis AM, Napravnik S, Seña AC, Eron JJ. "Late Entry to HIV care among Latinos compared with no-Latinos in a Southeastern US cohort". CID 2011; 53: 480-487.
- Mosier DE. "How HIV changes ist tropism: evolution and adaptation?". Curr Opin HIV AIDS 2009; 4:125-130.
- 3. Mahajan S, Agosto-Mojica A, Aakinkeel R, Raynolds JL, Nair BB, Sykes DE, et al. "Role of chemokines and cyto-kine polymorphisms in the progression of HIV-1 disease". *Biochem Biophys Res Commun* 2010; 396:348-352.
- Chatterjee A, Rathore A, Viddyant S, kakkar K, Dhole TN. "Chemokines and chemokines receptors in susceptibility to HIV-1 infection and progression to AIDS". *Disease Markers* 2012; 32: 143-151.
- Kamat A, Misra V, Cassol E, Ancuta P, Yan Z, Li C, et al. "A plasma biomarker signatura of immune activation in HIV patients on antiretroviral therapy". *Plos One* 2012; 7: e30881.
- 6. Liovat AS, Rey-Cuillè MA, Lecuroux C, Jacquelin B, Girault I, Petitjean G, et al. "Acute plasma biomarkers of T cell activation set-point levels and of disease progression in HIV infection". Plos One 2012; 7: e46143.
- Herman SM, van Leth F, Kiragga AN, Hoepelman AIM, Lange JMA, Manabe YC. "Unrecognised tuberculosis at antiretroviral therapy initiation is associated with lower CD4+ T cell recovery". Trop Med Int Health 2012; 17: 1527-1533
- 8. Mederos CLM, Reyes PA, Valdés AL, Rodríguez DF, Sardiñas AM, Martínez MR, et al. "Coinfección por *Mycobacterium*

- malmoense y Mycobacterium tuberculosis en paciente con el síndrome de inmunodeficiencia humana". Rev Peru Med Exp Salud Pública. 2014;31:788-792.
- Cortes CP, Wehbe FH, McGowan CC, Shepherd BE, 9. Duda SN, Jenkins CA et al. "Antiretroviral Therapy Initiation." According with Monthline in LIV Polytod Tile and Til
- tion: Association with Mortality in HIV-Related Tuberculosis". *Plos One*. 2013; 8: e74057. Rodríguez C Martínez E, Bolívar G, Sánchez S, Carrascal
- E. "Toxoplasmosis of the spinal cord in an immunocompromised patient: case report and review of the literature". Colombia Médica 2013; 44: 232-235.
 - Rostami A, Keshavarz H, Shojaee S, Mohebali M, Reza
- 11. Meamar A. "Frequency of *Toxoplasma gondii* in HIV Positive Patients from West of Irán by ELISA and PCR". *Iranian J Parasitol* 2014; 9: 474-481.
- Yohanes T, Debalke S, Zemene E. "Latent Toxoplasma 12. gondii Infection and Associated Risk Factors among HIV-Infected Individuals at Arba Minch Hospital, South Ethiopia". AIDS Research and Treatment 2014; http://dx.doi.org/10.1155/2014/652941.
- Chiang T-Y, Kuo M-C, Chen C-H, Yang J-Y, Kao C-F, et al. 13. "Risk Factors for Acute Toxoplasma gondii Diseases in Taiwán: A Population-Based Case-Control Study". *PLoS ONE* 2014; 9: e90880. doi:10.1371.
- Machala L, Maly M, Beran O, Jilich D, Kodym P. "Inci-14. dence and clinical and immunological characteristics of primary Toxoplasma gondii infection in HIV-infected patients". *Int J Infect Diseases* 2013; 17: e892–e896.

- 15. Augusto Xavier G, Gonzalez Cademartori B, Azevedo Da Cunha Filho N, Da Rosa Farias Na. "Evaluation of seroepidemiological toxoplasmosis in hiv / aids patients in the south of Brasil". Rev. Inst. Med. Trop. Sao Paulo 2013: 55:25-30.
- 16. Xiao J, Gao G, Li Y, Zhang W, Tian Y, Huang Y, et al. "Spectrums of Opportunistic Infections and Malignancies in HIV-Infected Patients in Tertiary Care Hospital, China". PLoS ONE 2013: 8: e75915. doi:10.1371.
- 17. Basavaprabhu A, Soundarya M, Deepak M, Satish R. "CNS Toxoplasmosis Presenting with Obstructive Hydrocephalus in Patients of Retroviral Disease-A Case Series". *Med J Malaysia*. 2012; 67: 214-216.
- 18. Gheuens S, Cheeseman SH, Koralnik IJ. "Hidden in plain view: emergence of Progressive Multifocal Leukoencephalopathy after treatment of CNS Toxoplasmosis". Acta Neurol Belg 2011; 111: 217-219.
- Sukthana Y, Mahittikorn A, Wickert H, Tansuphaswasdikul S. "A promising diagnostic tool for toxoplasmic encephalitis: tachyzoite/bradyzoitenstage-specific RT-PCR". Int J Infect Diseases 2012; 16:e279-e284.
- 20. Osunkalu VO, Akanmu SA, Ofomah NJ, Onyiaorah IV, Adediran A, Akinde RO. "Seroprevalence of Toxoplasma gondii IgG antibody in HIV-infected patients at the Lagos University Teaching Hospital". HIV/AIDS - Research and Palliative Care 2011; 3: 10-105.
- 21. Lejeune Ma, Mirô JM, Lazzari ED, Garcìa F, Claramonte X, Martìnez E, et al. "Restoration of T Cell Responses to Toxoplasma gondii after Successful Combined Antiretroviral Therapy in Patients with AIDS with Previous Toxoplasmic Encephalitis". CID 2011; 52: 662-670.
- 22. Kourì V, Martìnez PA, Capò V, Blanco O, Rodríguez ME, Jiménez N, et al. "Kaposi's Sarcoma and Human Herpesvirus8 inCuba: Evidence of subtype B expansion". *Virology* 2012; 432: 361-369.
- 23. Von Braun A, Braun DL, Kamarachev J, Günthard HF. "New Onset of Kaposi Sarcoma in a Human Immunodeficiency Virus-1-Infected Homosexual Man, Despite Early Antiretroviral Treatment, Sustained Viral Suppression, and Immune Restoration". Open Forum Infectious Diseases 2014; 1:ofu005. doi: 10.1093/ofid/ofu005.
- 24. Nelwan EJ, Pramono LA, Lubis AM, Djoerban Z. "Kaposi Sarcoma of the Eye in an HIV Patient Well-responded to HAART". *Acta Medica Indonesiana-The Indonesian Journal of Internal Medicine*. 2014; 46:253-255.
- 25. Pittore B, Loris Pelagatti C, Deiana F, Ortu F, Maricosu E, Cossu S, et al. "Isolated Kaposi Sarcoma of the Tonsil: A Case Report and Review of the Scientific Literature". Case Reports in Otolaryngology. 2015; doi. org/10.1155/2015/874548.
- 26. Saldarriaga-Cantilloa A, Bravoa LE, Londoño O, García LS, Collazosa P. "Epidemiological surveillance of the HIV/AIDS complex through the analysis of trends in the incidence of Kaposi's sarcoma in Cali, Colombia". Colombia Médica 2012; 43: 273-280.

- 27. Thariat J, Kirova Y, Sio T, Choussy O, Vees H, Schick U, et al. "Mucosal Kaposi sarcoma, a Rare Cancer Network study". *Rare Tumors* 2012; 4:e49.
- 28. Hirai Y, Yoshihara T, Motoji T, Totsuka K. "Facialoropharyngeal Kaposi Sarcoma in a HIV-seropositive man". *Intern Med* 2012; 51:2989-2990, DOI: 10.2169.
- 29. Avilés-Salas A, Cornejo-Juárez P, de J. Sobrevilla-Calvo P. "Coexistencia de linfoma plasmablàstico, sarcoma de Kaposi y enfermedad de Castleman en un paciente con infección por el virus de inmunodeficiencia humana". Rev Chil Infect 2011; 28: 76-80.
- 30. Nelson B, Borok MZ, Mhlanga TO, Makadzange AT, Campbell TB. "AIDS-associated Kaposi sarcoma: outcomes after initiation of antiretroviral therapy at a university-affiliated hospital in urban Zimbabwe". Int J Infect Diseases 2013; 17: e902-e906.
- 31. Ogoina D, Adekunle V, Obiako R, Umar A, Akolawole M, Ovosi J. "Disseminated infections due to Immune Reconstitution Inflammatory Syndrome after Highly Active Antiretroviral Therapy - Report of 3 cases from Nigeria". Pan African Med J. 2011; 9: 1-5.
- 32. Luu HN, Amirian ES, Chiao EY, Scheurer ME. "Age patterns of Kaposi's sarcoma incidence in a cohort of HIV-infected men". *Cancer Med* 2014; 3: 1635-1643.
- 33. Unemori P, Leslie KS, Hunt PW, Sinclair E, Epling L, Mitsuyasu R, et al. "Immunosenescence is associated with presence of Kaposi's sarcoma in antiretroviral treated HIV infection". *AIDS* 2013 Jul; 27: 1735-1742. doi:10.1097/QAD.0b013e3283601144.
- 34. Gopal S, Achenbach CJ, Yanik EL, Dittmer DP, Eron JJ, Engels EA. "Moving Forward in HIV-Associated Cancer". *J Clin Oncology*. 2014; 32: 876-880.
- 35. Fernandes LS. Human immunodeficiency virus and cancer. "A population of HIV-infected patients at Hospital de Santa Maria and predictors of cancer". *GERMS* 2012; 2: 60-75
- 36. Castilho JL, Luz PM, Shepherd BE, Turner M, Ribeiro SR, Bebawy SS. "HIV and cancer: a comparative retrospective study of Brazilian and U.S. clinical cohorts. Infectious Agents and Cancer". 2015; 10: 1-10.
- 37. Tanon A, Jaquet A, Ekouevi DK, Akakpo J, Adoubi I, Diomande I. "The Spectrum of Cancers in West África: Associations with Human Immunodeficiency Virus". PLoS ONE. 2012; 7: e48108. doi:10.1371.
- 38. Pimpin LN, Drumright ME, Kruijshaar I, Abubakar B, Rice V Delpech, V Hollo, A. et al. "Tuberculosis and HIV co-infection in European Union and European Economic Area countries". *Eur Respir J* 2011; 38: 1382–1392.
- 39. Legrand L, Catherine L, Brivet F, Musse D. "Solitary Hypothalamopituitary Toxoplasmosis Abscess in a Patient with AIDS". *AJNR Am J Neuroradiol* 2011; 32:E105–E06.
- 40. Nissapartorn V, Lee C, Fatt K, Loon LC, Mahmud R, Abdullah A. "Toxoplasmosis in HIV/AIDS patients: A current situation". *Jnp J. Infect Dis* 2014; 57: 160-165.

El peso de la obesidad en la letalidad de la Influenza A (H1N1): un estudio de casos y controles

Romo Martínez, Jesús Eduardo* González Barrera, Juan Antonio* Herrera Solís, María Evangelina* Valencia Espinosa, Silvia del Carmen*

The burden of obesity in the lethality of influenza A (H1N1): A case-control study

Fecha de aceptación: abril 2015

Resumen

ANTECEDENTES. Existe una asociación muy importante entre el antecedente de obesidad y la infección por Influenza A (H1N1), llevando a complicaciones que pueden tener desenlace fatal.

MATERIAL Y MÉTODO. Estudio de casos y controles que incluyó pacientes hospitalizados y confirmados de Influenza A (H1N1) mediante técnica de PCR; definiendo "casos" a los pacientes fallecidos y "controles" a quienes mejoraron de acuerdo con este diagnóstico. Se estimaron frecuencias, porcentajes y diferencia de medias empleando la prueba t Student. Para el estudio de factores de riesgo se realizó un primer análisis bivariado por Chi-cuadrada, estimando Odds Ratio (OR) con intervalos de confianza del 95 % (IC 95 %). Las variables con valor p < 0.20, se sometieron a un segundo análisis de regresión logística múltiple ajustando los OR y los IC 95 %, donde un resultado con valor p < 0.05 se consideró significativo.

RESULTADOS. Los casos poseían en promedio 4.0 kg/m2 más que los controles (valor p < 0.05). El análisis bivariado destacó factores de riesgo significativos de la obesidad con OR = 8.75 (IC 95 %: 2.09-36.49); antecedente de enfermedad cardiovascular con OR = 2.36 (IC %: 0.88-6.34); antecedente de insuficiencia renal crónica con OR = 3.16 (IC 95 %: 0.93-10.73) y tiempo de atención inoportuno con OR = 3.11 (IC %: 0.94-10.23).El análisis de regresión logística múltiple, destacó que la obesidad fue el único factor de riesgo que tuvo peso para la letalidad por esta enfermedad con un OR ajustado = 6.46 (IC 95 %: 1.27-32.48).

CONCLUSIONES. La obesidad resultó ser el factor de riesgo principal asociado a letalidad por Influenza A (H1N1). **Palabras clave:** obesidad, Influenza A (H1N1), letalidad.

Abstract

BACKGROUND. There is a significant association between obesity and history of infection with Influenza A (H1N1), leading to complications ranging from a prolonged hospital stay to a fatal outcome.

METHODS. Case-control study that included hospitalized patients and confirmed Influenza A (H1N1) by PCR; defining "cases" to the deceased patients and "controls" no deceased patients. Frequencies, percentages and mean differences were estimated by Student's t test. To study risk factors first bivariate analysis was performed using Chi-square, estimating Odds Ratio (OR) with confidence intervals at 95 % (95 % CI). Variables with p < 0.20 were subjected to a second analysis of logistic regression and adjusted ORs and 95 % where an outcome with p < 0.05 were considered significant.

RESULTS. Cases had on average 4.0 kg/m^2 more than controls (p value < 0.05). The bivariate analysis highlighted significant risk factors for obesity with OR = 8.75 (95 % CI: 2.09-36.49); history of cardiovascular disease with OR = 2.36 (CI %: 0.88-6.34); history of chronic renal failure with OR = 3.16 (95 % CI: 0.93-10.73) and inopportune time attention with OR = 3.11 (CI %: 0.94-10.23). The multiple logistic regression analysis, noted that obesity was the only factor risk weight for lethality had this disease with an adjusted OR = 6.46 (95 % CI: 1.27-32.48).

CONCLUSIONS. Obesity was the risk factor with more preponderance associated with death due to Influenza A (H1N1). **Keywords:** Obesity, Influenza A (H1N1), Iethality.

*Instituto Mexicano del Seguro Social. Hospital General Regional Núm. 46, Guadalajara Jalisco. Departamento de Epidemiología. Dirección: Lázaro Cárdenas No. 2063 entre 8 de julio y Loro, Colonia Morelos, Guadalajara, Jalisco.

Dirección electrónica: jesusromo.epidemio@gmail.com

Introducción

La Influenza A (H1N1), es una enfermedad respiratoria transmisible, causada por el virus de la Influenza tipo A del subtipo hemaglutinina 1 y neuraminidasa 1 (glicoproteínas localizadas en la envoltura del virus). Los síntomas son similares a los de la gripe estacional común, entre los que se incluyen: fiebre, tos, dolor de garganta, secreción nasal, además de dolor muscular, dolor abdominal, fiebre superior a 38 °C, falta de apetito y/o diarrea.¹

Desde la epidemia de Influenza sucedida en el año 2009 se ha observado una asociación especial entre el antecedente de obesidad traducido por un índice de masa corporal (IMC) \geq 30 kg/m² y las complicaciones por Influenza A (H1N1) que van desde un tiempo de estancia hospitalaria prolongado hasta consecuencias más lamentables como la muerte debida a esta enfermedad.²

Por ende, es conveniente enfatizar que la obesidad es una condición co-mórbida que es atribuida a los procesos fisio-patológicos derivados de un estado pro-inflamatorio que produce disminución del factor de necrosis tumoral, inflamación micro vascular y trombosis; así como también producción de adiponectina (reduciendo la actividad de macrófago y producción de citoquinas) propiciando un estado pro inflamatorio con predisposición a infecciones,³ aunado a la evidencia de que es un factor de riesgo relacionado con disfunción inmunológica.⁴ Los efectos de la obesidad sobre la función pulmonar, ponen en manifiesto que un exceso de peso reduce la capacidad residual funcional del aparato respiratorio debido al exceso de tejido adiposo circundante en la caja torácica, y con ello, a la disminución la ventilación-perfusión.⁵

La mayoría de las personas infectadas con el virus de la Influenza, se recuperan en una o dos semanas; aunque esta enfermedad puede representar un grave riesgo para la salud (incluso la muerte) cuando afecta personas vulnerables (niños menores de cinco años de edad, ancianos y personas que padecen ciertas afecciones, como obesidad, y enfermedades crónicas: diabetes, enfermedades cardiovasculares, pacientes con infección por el virus de la inmunodeficiencia humana (VIH) y pacientes con terapias inmunosupresoras.⁶⁻¹⁴

Presentamos un estudio de casos y controles que tiene como objetivo analizar el factor de riesgo de la obesidad y su asociación con la letalidad de la Influenza A (H1N1) en pacientes que fueron hospitalizados en nuestro centro.

Material y método

Estudio de casos y controles que incluyó a los pacientes que fueron hospitalizados en el IMSS-HGR No. 46 "Lázaro Cárdenas" de Guadalajara, Jalisco con diagnóstico de Influenza A (H1N1) confirmado mediante técnica de PCR, y registrados en el Sistema de Notificación en Línea para la Vigilancia Epidemiológica de Influenza (SINOLAVE) del primero de enero del 2010 al 31 de diciembre del 2014.

A través de un muestreo por conveniencia, se identificó a los pacientes registrados con manejo hospitalario

y con información acerca del estatus o motivo de egreso; definiendo <u>casos</u> (N = 22) a aquellos que egresaron por "Defunción" y <u>controles</u> (N = 66) a quienes egresaron por "Mejoría". Se excluyeron pacientes que no cumplieron con el control de calidad de la información.

Se estimaron frecuencias, porcentajes y diferencia de medias empleando la prueba t Student. Se catalogó como variable dependiente a la letalidad de la Influenza A (H1N1), y a los factores de riesgo identificados en los pacientes como variables independientes. Para el estudio de factores de riesgo se realizó un primer análisis bivariado utilizando Chi-cuadrada (X^2), estimando Odds Ratio (OR) con intervalos de confianza al 95 % (IC 95 %). Las variables con valor p < 0.20, se sometieron a un segundo análisis de regresión logística múltiple ajustando los OR e IC 95 %. De este segundo análisis un resultado con valor p < 0.05 se consideró estadísticamente significativo.

El análisis estadístico fue procesado con el programa Epi Info™ 7 versión 7.1.3 (Software para la práctica de Salud Pública dispuesta por el CDC, Atlanta).

Resultados

Las características generales de los pacientes incluidos en el estudio se resumen en el cuadro 1. El factor sexo del paciente o grupo de edad no resultaron estadísticamente significativos. En cuanto a la edad promedio, en los pacientes clasificados como casos fue de 47.6, \pm 18.7; mientras que la edad de los controles de 36.0, \pm 22.3 con una diferencia de medias de 11.6 (valor p < 0.05).

Entre los pacientes clasificados como casos 68.2 % tuvieron el antecedente de obesidad, versus el 18.2 % de los controles (valor p < 0.05); por su parte, la antropometría revela que los casos tuvieron en promedio 4.0 kg/m² más que los controles, es decir un IMC 30.3 (\pm 6.8) kg/m² versus IMC 26.3 (\pm 7.0) kg/m² (valor p < 0.05).

A través del análisis bivariado, además de la obesidad –con OR de 8.75 (IC 95 %: 2.09-36.49)– los antecedentes patológicos como enfermedad cardiovascular con OR de 2.36 (IC %: 0.88-6.34) e insuficiencia renal crónica (IRC) con OR = 3.16 (IC 95 %: 0.93-10.73) mostraron una diferencia para ser factores tomados en cuenta en el análisis multivariado tras resultar valor p < 0.20. Así también, la temporalidad de atención fue significativa, pues partiendo de la definición de un tiempo de atención inoportuno (cuando el paciente tardó más de 2 días para solicitar atención médica), comprobamos que esta condición resultó un OR de 3.11 (IC %: 0.94-10.23); (Cuadro 2).

Tras el análisis de regresión logística múltiple incluyendo las resultados significativos previamente mencionados, solo el antecedente de obesidad resultó significativo con un OR ajustado = 6.46 (IC 95 %: 1.27-32.48) y valor p < 0.05; mientras que los antecedentes de enfermedad cardiovascular, IRC o tiempo de atención inoportuno perdieron potencia estadística y resultaron significativos (Cuadro 2).

Cuadro 1 Características generales de los pacientes incluidos en el estudio

Características	Casos (N = 22)	Controles (N = 66)	Diferencia de medias	Valo
Sexo (%)				0.
Femenino	11 (50.0)	31 (46.9)		
Masculino	11 (50.0)	35 (53.1)		
Edad en años (media, DE)	47.6, ± 18.7	36.0, ± 22.3	11,06	< 0
Grupo de edad (%)				0.
Niños y adolescentes	1 (4.5)	15 (22.7)		
Adultos	16 (72.8)	40 (60.6)		
Adultos mayores	5 (22.7)	11 (16.7)		
IMC kg/m2 (media, DE)	30.3, ±6.8	26.3, ± 7.0	4,0	< C
Clasificación IMC (%)				< 0
Bajo peso	1(4.6)	7 (10.6)		
Normal	3 (13.6)	21(31.8)		
Sobrepeso	3 (13.7)	26 (39.4)		
Obesidad	15 (68.2)	12 (18.2)		
Antecedentes patológicos (sí, %)				
Asma	1 (4.6)	3 (4.6)		
Diabetes	6 (27.3)	12 (18.2)		0.
Enfermedad cardiovascular	13 (59.1)	25 (37.9)		0.
EPOC	1 (4.6)	1 (1.5)		0.
Inmunocompromiso	1 (4.6)	3 (4.6)		
IRC	6 (27.3)	7 (10.6)		0.
Otros antecedentes (sí, %)				
Tabaquismo	2 (9.1)	5 (7.6)		0.
Embarazo (mujeres en edad reproductiva)	1 (14.3)	7 (36.8)		0.
Manejo en UCI	7 (31.8)	17 (25.8)		0.
Tratamiento antiviral oportuno	3 (13.7)	10 (15.1)		0.
Recibió vacuna contra influenza	5 (22.7)	14 (21.2)		0.
Edad vulnerable, \leq 5 o \geq 60 años (sí %)	6 (27.3)	19 (28.7)		0.
Atención inoportuna, >2 días (sí, %)	18 (81.8)	39 (59.1)		< (
*Variables cualitativas mediante	X^2 o Fisher exacto; C	diferencia de medias	mediante <i>t</i> Student.	

Cuadro 2 Análisis bivariado y regresión logística múltiple de los factores de riesgo asociados con letalidad de Influenza A (H1N1) en los pacientes sometidos al estudio

Footowoo do viceno	An	álisis bivaria	ado	Regresio	ón logística	múltiple
Factores de riesgo	OR	IC 95 %	Valor p	OR	IC 95 %	Valor p
Obesidad	8.75	2.09 - 36.49	< 0.05	6.46	1.27 - 32.84	< 0.05
Asma	1.12	0.09 - 10.13	1,00			
Diabetes	1.68	0.54 - 5.21	0.36			
Enfermedad cardiovascular	2.36	0.88 - 6.34	0.08	1.38	0.38 - 5.02	0.61
EPOC	3.09	0.18 - 51.67	0.43			
Inmunocompromiso	1,00	0.09 - 10.13	1,00			
IRC	3.16	0.93 - 10.73	0.06	2.37	0.49 -11.34	0.27
Tabaquismo	1.22	0.21 - 6.78	0.82			
Embarazo	0.28	0.02 - 2.88	0.28			
Manejo en UCI	1.34	0.46 - 3.85	0.58			
Edad vulnerable, \leq 5 o \geq 60 años	0.92	0.31 - 2.72	0.89			
Atención inoportuna, >2 días	3.11	0.94 - 10.23	0.06	3.04	0.79 - 11.65	0.1

Discusión

La obesidad fue el único factor con una asociación epidemiológica significativa tras el análisis multivariado, presentando un riesgo 6 veces mayor de letalidad para quienes presentaban esta condición. Desde la epidemia en el 2009 Seema y cols., así como otros autores, 2,21 ya documentaban una asociación entre el antecedente de obesidad y las complicaciones por Influenza A (H1N1) que iban desde un tiempo de estancia hospitalaria prolongado hasta la muerte.

En nuestro estudio encontramos además, que el desenlace de esta enfermedad no fue predispuesto por factores socio demográficos, salvo la edad de los pacientes, pues se encontró que los fallecidos eran en promedio 11 años mayores que los egresados por mejoría. Así también, antecedentes patológicos como asma, diabetes, EPOC o estado de inmunocompromiso o gravidez, tampoco condicionaron la fatalidad.

Zolotusca L y cols., en su estudio retrospectivo de dos años en 230 pacientes confirmados con esta enfermedad, encontraron resultados interesantes demostrando que el estado gestacional y el inmunocompromiso, además de la obesidad, si se asociaban con la letalidad. En nuestro estudio esta interacción no fue evidente, probablemente debido al tamaño de la muestra.

Las fortalezas y limitaciones de nuestra investigación corresponden a las de un estudio retrospectivo. 16-18 Se buscó evitar los errores potenciales de los estudios epidemiológicos; seleccionando por conveniencia la muestra de pacientes considerados como casos y empleando el método pareado para evitar el error aleatorio en los controles, tratando también de evitar el error sistemático haciendo una selección y clasificación estricta de la población estudiada, así como también evitando el sesgo de medición sobre la clasificación de las condicionantes de los pacientes a través de la validación en los sistemas especiales de información.

Esta investigación tiene por objeto demostrar la importancia de priorizar la atención de los pacientes que cumplan con la definición operacional de influenza¹⁹ y que presenten factores de riesgo como enfermedad cardiovascular, insuficiencia renal, sintomatología con curso mayor a dos días y, sobre todo, obesidad; siendo esta última una condición prevalente en nuestro país en todas las edades; y que no se ha asociado al riesgo de mortalidad en Asia ni Europa, pero sí en los Estados Unidos.

Invitamos con ello a diseñar una escala especial que podría ser implementada en el área de *Triage* en los servicios de urgencias durante las temporadas invernales, en donde a través de una puntuación dada se otorgue una atención más efectiva en términos de pronóstico con el fin de disminuir las tasas de letalidad de la Influenza A (H1N1) poniendo especial atención en pacientes con obesidad, afección que en sí misma, es uno de los principales problemas de salud pública en nuestro país.^{20,21}

- Centers for Disease Control and Prevention (CDC). Influenza A (H1N1). (Actualizado en 2014 Mar 28; consultado en 2015 Ene 08). Disponible en http://www.cdc.gov/flu/
- 2. Seema J, Chaves S. Obesity and Influenza. *Clinical Infectious Diseases*. 2011; 53(5): 422-424.
- 3. Falagas ME, Kompoti M. Obesity and infection. *Lancet Infect Dis* 2006; 6: 438-446.
- Smith AG, Sheridan PA, Harp JB, et al. Diet-induced obese mice have increased mortality and altered immune responses when infected with influenza virus. J Nutr 2007; 137: 1236-1243.
- Salome CM, King GG, Berend N. Physiology of obesity and effects on lung function. J Appl Physiol 2010; 108: 206-211
- Kanchana S, Kanchana S, Vijitsopa T, Thammakumpee K, Yamwong S, Sawanyawisuth K. Clinical factors predictive of pneumonia caused by pandemic 2009 H1N1 influenza virus. Am J Trop Med Hyg. 2013; Mar; 88(3): 461-463.
- 7. Mertz D, Kim TH, Johnstone J, Lam PP, Science M, Kuster SP, et al. Populations at risk for severe or complicated influenza illness: systematic review and meta-analysis. *BMJ*. 2013 Aug 23; 347: f5061.
- 8. Louie JK, Acosta M, Winter K, Jean C, Gavali S, Schechter R, et al. Factors associated with death or hospitalization due to pandemic, Influenza A (H1N1) infection in California. JAMA. 2009; Nov 4; 302(17): 1896-902.
- 9. Ren YY, Yin YY, Li WQ, Lin Y, Liu T, Wang S, et al. Risk factors associated with severe manifestations of 2009 pandemic influenza A (H1N1) infection in China: a case control study. Virol J. 2013; May 15; 10: 149.
- Lenzi L, Wiens A, Grochocki MH, Pontarolo R. Study of the relationship between socio demographic characteristics and new influenza A (H1N1). Braz J Infect Dis. 2011; Sep-Oct; 15(5): 457-61.
- 11. Zarychanski R, Stuart TL, Kumar A, Doucette S, Elliott L, Kettner J, et al. Correlates of severe disease in patients with 2009 pandemic influenza (H1N1) virus infection. CMAJ. 2010; Feb 23; 182(3): 257-64.

- 12. Jain S, Kamimoto L, Bramley AM, Schmitz AM, Benoit SR, Louie J, et al. Hospitalized patients with, H1N1 influenza in the United States April-June 2009. *N Engl J Med.* 2009;Nov 12; 361(20): 1935-1944.
- O'Riordan S, Barton M, Yau Y, Read SE, Allen U, Tran D. Risk factors and outcomes among children admitted to hospital with pandemic H1N1 influenza. *CMAJ*. 2010; Jan 12; 182(1): 39-44.
- 14. Centers for Disease Control and Prevention (CDC). Intensive-care patients with severe novel influenza A (H1N1) virus infection-Michigan, June 2009. MMWR Morb Mortal Wkly Rep. 2009; Jul 17; 58(27): 749-752.
- 15. Zolotusca L, Jorgensen P, Popovici O, Pistol A, Popovici F, Widdowson MA, et al. Risk factors associated with fatal influenza, Romania, October 2009-May 2011. *Influenza Other Respir Viruses*. 2014; Jan; 8(1): 8-12.
- Hernández-Avila M, Garrido-Latorre F, López-Moreno S. Diseño de estudios epidemiológicos. Salud Publica Mex. 2000; Mar-Apr; 42(2): 144-154.
- 17. Londoño F. *Metodología de la investigación epidemioló*gica. 3a ed. Bogotá: Editorial El Manual Moderno; 2004.
- 18. Bonita R, Beaglehole R, Kjellström. *Epidemiología básica*. Segunda edición. Washington, D.C: OPS; 2008.
- 19. Dirección General de Epidemiología. Manual de procedimientos estandarizados para la vigilancia epidemiológica de la Influenza. México 2014 (Actualizado 2014 Ene 17; consultado 2014 Mar 18). Disponible en: http:// www.epidemiologia.salud.gob.mx/doctos/infoepid/vig_ epid_manuales/11_Manual_Influenza_vFinal_17ene14. pdf
- Barquera S, Campos-Nonato I, Hernández-Barrera L, Flores M, Durazo-Arvizu R, Kanter R, et al. Obesity and central adiposity in Mexican adults: results from the Mexican National Health and Nutrition Survey 2006. Salud Publica Mex. 2009; 51 Suppl 4: S595-S603.
- 21. Louie JK, Acosta M, Samuel MC, Schechter R, Vugia DJ, Harriman K, Matyas BT; California Pandemic (H1N1) Working Group. A novel risk factor for a novel virus: obesity and 2009 pandemic influenza A (H1N1). Clin Infect Dis. 2011; 52: 301-312.

Perfil de resistencia a antimicrobianos de E. coli aislada de pacientes con infección urinaria nosocomial en un hospital de segundo nivel de atención en la ciudad de México

Ramírez Sandoval, Ma. de Lourdes Patricia* Varela Ramírez, Maribel Adriana* Colunga Guillén, Juana Guadalupe* Salcedo Romero, Rosalba* Hernández Gómez, Vicente* Santiago Santiago, Ramón* Roldan Vences, Alejandro*

Antimicrobial resistance profile in E. coli isolates from patients with nosocomial urinary tract infection from a second care level hospital in Mexico City

Fecha de aceptación: abril 2015

Resumen

OBJETIVOS. Describir los patrones de resistencia bacteriana en cultivos de orina en un hospital general de zona del Seguro Social del sur de la ciudad de México.

MATERIAL Y MÉTODOS. Se incluyeron las cepas obtenidas de cultivos de orina del 1º de enero al 31 de diciembre del 2013, se obtuvo el porcentaje de sensibilidad para diferentes antibióticos.

RESULTADOS. Se detectaron 701 cultivos positivos, 42 (6 %) correspondieron a organismos grampositivos, 28 (4 %), a levaduras y 631 (90 %) a organismos gramnegativos. Escherichia coli fue el principal microorganismo identificado. La resistencia que encontramos fue del 96 % para ampicilina, 82 % para trimetoprim con sulfametoxazol, 48 % para ciprofloxacino, 45 % para nitrufurantoína, 43 % para amikacina, 33 % moxifloxacino, 31 % para gentamicina, 30 % cefpodoxime, 26 % ceftazidime.

conclusión. Existe un incremento progresivo de resistencia para E. coli, es urgente intensificar y concientizar a los médicos sobre el uso apropiado de antibióticos.

Palabras clave: resistencia bacteriana; antimicrobianos; infección nosocomial; infección urinaria.

Abstract

OBJECTIVES. To describe patterns of antimicrobial resistance of urine cultures in a general hospital in southern Mexico City.

MATERIAL AND METHODS. The strain obtained from urine cultures from January 1st to 31 December 2013 were included, the percentage of sensitivity to different antibiotics was obtained.

RESULTS. There were 701 positive cultures, 42 (6 %) were grampositive bacteria, 28 (4 %) yeast and 631 (90 %) gramnegative. Escherichia coli was the most frequently isolated bacterium. The resistance encountered was 96 % for ampicillin, 82 % to trimethoprim with sulfamethoxazole, 48 % to ciprofloxacin, 45 % for nitrofurantoin, 43 % to amikacin, moxifloxacin 33 %, 31 % to gentamicin, 30 % cefpodoxime, ceftazidime 26 %.

CONCLUSION. There is a progressive increase in resistance to E. coli, it is required to intensify and create awareness among physicians about the appropriate use of antibiotics.

Keywords: bacterial drug resistance; antimicrobial, nosocomial infection, urinary tract infection.

Introducción

Las infecciones del tracto urinario (ITU) en pacientes hospitalizados es la tercera causa de infección nosocomial reportada en nuestro país; son definidas como los procesos inflamatorios causados por cualquier microorganismo patógeno en las vías urinarias.1

Las infecciones del tracto urinario nosocomial (ITUN) son consecuencia de la atención medica hospitalaria, en nuestro país la Red hospitalaria de vigilancia epidemiológica (RHOVE) lo reporta como la tercera causa de IN a nivel nacional² no obstante entre las metas internacionales de

Dra. María de Lourdes Patricia Ramírez Sandoval Hospital General de Zona N° 32 "Dr. Mario Madrazo Navarro". IMSS. Calzada del Hueso sin número, Col. Prados Coyoacán, México DF. Tel. y Fax: (55) 5677 85 99

Dirección electrónica:dra patyramirez@hotmail.com o lourpaty@yahoo.com.mx

^{*}Hospital General de Zona N° 32 "Dr. Mario Madrazo Navarro". IMSS Correspondencia:

seguridad del paciente representa el quinto objetivo para reducir las infecciones nosocomiales. 1,2

La morbilidad y mortalidad que causan la ITUN no solo incrementan la estancia hospitalaria y los costos de hospitalización sino también el impacto económico en la familia del paciente por inactividad laboral y pérdida de ingresos.³

Entre los organismos gramnegativos que infectan el tracto urinario la enterobacteria más aislada es la *E. coli.* ⁴⁻⁵ De las cepas de *E. coli* que infectan a los seres humanos se han descrito dos grupos principales: a) las que causan infecciones intestinales (cepa diarrogénicas); y b) las que producen infecciones extra intestinales; estas últimas son las responsables de las infecciones del tracto urinario, todos los tipos de *E. coli* comparten el antígeno somático "O" que se define por los serogrupos, y el antígeno "H" o flagelar que se define por los serotipos. Los serogrupos que se han asociado con ITU son 01, 02, 04, 06, 07, 08, 016, 018, 022, 025y 075 que son los responsables de más del 75 % de las infecciones.⁶⁻⁷

Las E. coli tienen múltiples mecanismos de resistencia a los antibióticos, recientemente ha incorporado la producción de beta-lactamasas de espectro extendido (BLEE).8-9

El objetivo de este estudio fue describir los patrones de resistencia antimicrobiana en aislamientos de orina de pacientes con ITU.

Material y métodos

Hospital

Hospital Dr. Mario Madrazo Navarro. IMSS. El HGZ #32 es un hospital general que cuenta con 239 camas con 8 284 hospitalizaciones al año, cuenta con los servicios de pediatría, cirugía general, medicina interna, ginecología-obstétrica y urgencias.

Protocolo de trabajo

Se realizó un estudio prospectivo basado en los informes del laboratorio de microbiología, se incluyeron todos los cultivos de orina positivos de pacientes hospitalizados del primero de enero al 31 de diciembre de 2013.

Las muestras se inocularon en los medios de agar sangre de carnero, agar chocolate, MacConkey y Sabouraud. La identificación y sensibilidad antimicrobiana se realizó a través del método semiautomatizado Microscan y se identificaron en el VITEK 2 con las tarjetas de sensibilidad AST-GN23, AST-GN25 y AST-GN70 para determinar la sensibilidad de organismos gramnegativos aerobios. Se incluyeron los resultados de las cepas aisladas de *E. coli*.

Los antibióticos analizados fueron ampicilina, cefuroxime, cefpodoxime, ceftazidime, ceftriaxona, cefepime, amoxicilina con tazobactam, piperacilina con tazobactam, ampicilina/sulbactam, ciprofloxacina, levofloxacino, moxifloxacino, imipenem, meropenem, ertapenem, gentamicina, amikacina, nitrufurantoína, trimetoprim con sulfametoxasol, aztreonam y tigecilina.

Se consideró cultivo positivo cuando se obtuvo una cuenta ≥ 100 000 UFC/ml, se determinaron cepas sensibles o resistentes de acuerdo con la concentración mínima inhibitoria (CMI), según los parámetros del *Clinical and Laboratory Standards Institute* (CLSI).

Análisis estadístico

Se determinó la frecuencia de resistencia específica para cada antibiótico. Se obtuvo la diferencia porcentual, se utilizó la prueba de ji cuadrada y se tomó como diferencia estadísticamente significativa $p \leq 0.05$.

Resultados

Durante el periodo estudiado se notificaron 701 urocultivos positivos de los cuales el 74 % procedían del servicio de Medicina Interna seguido por Cirugía General con el 16 % (cuadro 1).

Cuadro 1
Incidencia de infección de vías urinarias nosocomiales por servicio 1° de enero a 31 diciembre de 2012

Servicio	Número de cepas	%
Pediatría	42	6 %
Gineco-obstetricia	14	2 %
Cirugía general	112	16 %
Medicina Interna	519	74 %
Urgencias	14	2 %
Total	701	100 %

Fuente: archivos de laboratorio de microbiología HGZ N° 32

Por distribución de organismos, 42 (6 %) correspondieron a organismos grampositivos, 28 (4 %), a levaduras y 631 (90 %) a organismos gramnegativos (cuadro 2). De estas 631 muestras, 464 (73.5 %) correspondieron a *E. coli.*, 63 (10 %) a *Pseudomonas aeruginosa*, seguido de *Klebsiella* sp con 44 (7 %) (cuadro 3).

Cuadro 2
Aislamiento de microorganismos en infección de vías urinarias nosocomiales

1º de enero a 31 diciembre de 2012

Microorganismos	Número de cepas	%
Cocos grampositivos	42	6.0
Hongos	28	4.0
Bacilos gramnegativos	631	90.0
Total	701	100.0

Fuente: archivo de laboratorio de microbiología HGZ N° 32

Cuadro 3
Microorganismos involucrados en infección de vías urinarias nosocomiales del 1° de enero al 31 de diciembre de 2012 n = 631 cepas gramnegativos

Microorganismos	Cepas	%
E. coli	464	73.5
Pseudomonas aeruginosas	63	10
Klebsiella sp	44	7
Proteus	19	3
Enterobacter clocae	19	3
Acinetobacter baumanni	13	2
Serratia	6	1
Citrobacter	3	0.5

Fuente: archivos de laboratorio de microbiología HGZ N° 32

Cuadro 4
Resistencia bacteriana en urocultivos por *E. coli*del 1° de enero al 31 de diciembre de 2012 N= 464 cepas

	Sensib	ilidad	Intern	nedio	Resist	encia	CIM 50	CIM 90
Antibiótico	Núm.	%	Núm.	%	Núm.	%	mg/mg	mg/ml
Ampicilina	5	1	14	3	445	96	2	32
Cefuroxima	376	81	23	5	65	14	1	64
Cefpodoxima	288	62	37	8	139	30	0.25	8
Ceftazidime	301	65	42	9	121	26	1	64
Ceftriaxona	334	72	14	3	116	25	1	64
Cefepima	418	90	9	2	37	8	1	64
Amoxicilina ácido clavulánico	394	85	14	3	56	12	2/1	32/16
Piperacilina/Tazobactam	427	92	9	2	28	6	4	128
Ampicilina Sulbactam	348	75	18	4	97	21	2/1	32/16
Ciprofloxacino	223	48	9	2	232	48	0.25	4
Levofloxacino	380	82	5	1	79	17	0.12	8
Moxifloxacino	302	65	9	2	153	33	0.25	8
Imipenem	394	85	14	3	56	12	1	16
Meropenem	408	88	18	4	37	8	0.25	16
Ertapenem	427	92	9	2	28	6	0.5	8
Gentamicina	297	64	23	5	144	31	1	16
Amikacina	237	51	28	6	199	43	2	64
Nitrufurantoína	255	65	0	0	209	45	16	512
TMP/SMX	83	18	0	0	380	82	20(1/19)	320(16/304)
Aztreonam	427	92	14	3	23	5	1	64
Tigeciclina	422	91	9	2	32	7	0.5	8

Limitamos nuestro reporte de susceptibilidad antimicrobiana a *E. coli.* por ser la especie observada con mayor frecuencia.

Encontramos resistencia del 96 % para ampicilina, 82 % para trimetoprim con sulfametoxazol, seguida por 48 % para ciprofloxacino, 45 % para nitrufurantoina, 43 % para amikacina, 33 % moxifloxacino, 31 % para gentamicina, 30 % cefopodoxima, 26 % ceftazidime (cuadro 4).

Se encontraron 60 (10 %) cepas de *E. Coli.* BLEE y 3 PAN resistentes que pertenecen a pacientes del servicio de Medicina Interna.

Discusión

Las infecciones del tracto urinario constituyen una de las cinco primeras causas de infección nosocomial en nuestro país. Ha habido un incremento en las resistencias bacterianas de los uropatógenos, con multirresistencia e inclusive panresistencia, especialmente por *Escherichia coli;* y como consecuencia, repercute en la práctica clínica, al dejar pocas alternativas de tratamiento.

El mayor consumo de antibióticos no racional, principalmente de los de uso restringido como son los carbapenems, cefalosporinas de cuarta y de quinta generación, inhibidores de beta-lactamasas y fluroquinolonas, ha

favorecido, el aumento del patrón de resistencia sobre todo de *E. coli*, debido a la producción o hiperproducción de beta-lactamasas, especialmente las de espectro extendido (BLEE), y actualmente hasta productoras de carbapenemasas. Esto se traduce en infecciones urinarias de difícil tratamiento y por lo tanto con mayor riesgo de mortalidad, sobre todo con un tratamiento no adecuado.

Los resultados obtenidos en este estudio se relacionan con lo descrito por otros autores, 8,10-12 aunque aquí se demostró mayor sensibilidad a cefalosporina de 2ª generación.

En este estudio no se consideró la evolución clínica, el tipo de paciente ni su gravedad, sino sólo se obtuvo la información de los estudios *in vitro*, que son el elemento de orientación de los médicos tratantes para decidir cuál es el antibiótico más eficaz y seguro para cada paciente. Para seleccionar el antibiótico adecuado, es necesario estructurar en cada área protocolos razonados y consensuados, de acuerdo con el mapa microbiológico y el patrón de sensibilidades, teniendo en cuenta el tipo de paciente, la infección y la gravedad, así como los antecedentes de infecciones y el uso previo de antibióticos.

De lo observado en nuestra población de estudio se sugiere, de acuerdo con la condición clínica del paciente, el uso de: nitrufurantoina o amoxicilina/ácido clavulánico, si cursa solo con cistitis; levofloxacino/cefuroxime si se trata de una pielonefritis; carbapenems o piperacilina tazobactam en bacteriemias y sepsis.

- Ramírez Sandoval M L P, Rojo Padilla J A. Guía práctica para el manejo de las infecciones intrahospitalarias. Ed Prado, México DF. 2001; 1-103.
- 2. RHOVE 9094.66.59.1. ppt-www.cofemermir.gob.mx, consultado 15 noviembre 2014.
- 3. Ramírez Sandoval M L P, Varela Ramírez M A, Huerta Romano J F. *Guía para controlar las infecciones en pacientes hospitalizados*. Ed Prado, México 2013; 30-57.
- 4. Barragán-Arteaga IA, Barriga-Angulo G, Calderón-Ferro F, et al. 1er Censo Nacional Sobre Manejo Antimicrobiano de Infecciones de Vías Urinarias (IVUs) en el Adulto. Bol Coleg Mex Urol 2005; 20 (2): 46-57.
- Barriga-Angulo G, Mercado-González NF, Arumir Escorza C. susceptibilidad antimicrobiana in vitro de 1200 microorganismos gram Negativos causales de infecciones de vías urinarias. *Enf Inf Microbiol* 2008; 28 (3): 90-98.
- Molina López J, Manjarrez Hernández A. *Infecciones de vías urinarias*. http://www.facmed.unam.mx/deptos/microbiologia/bacteriologia/enfermedades.
- Guajardo-Lara CE, Gonzalez-Martinez PM, Ayala-Gaytán JJ. Resistencia antimicrobiana en la infección urinaria por Escherichia coli adquirida en la comunidad.

- ¿Cuál antibiótico voy a usar? Salud Publica de México 2009; 51 (2): 155-159.
- 8. Cornejo P, Velázquez A. Tendencia del perfil de sensibilidad antimicrobiana de los aislamientos de sangre en un hospital oncológico (1998-2003). Salud Pública de México 2005; 47(4): 288-293.
- 9. Babic M, Hujer AA, Bonomo RA. What's new in antibiotic resistance? Focus on betalactamases. *Drug Resist Updates*. 2006; 9: 142-156.
- Kacmaz B. and Sultam N. In vitro susceptibilities of *Escherichia coli* and *Klebsiella spp*. to ampicillim-sulbac- tam and Amoxicillin-Clavulanic Acid. *Jpn J Infect Dis* 2007; 60: 227229.
- Stapleton P, Wu PJ, King A, Shannon K, French G, Phillips I. Incidence and mechanisms of resistance to the combination of amoxicillin and clavulanic acid in *Escherichia coli*. *Antimicrob Agents Chemother*. 1995; 39(11): 2478-2483.
- Vellano A, Rodriguez D, Barcelo ME, López A, Cano A, Vinado B, et al. Antimicrobial susceptibility of uropathogens and outcome following antibiotic treatment for urinary tract infections in primary healthcare. *Enferm Infecc Microbiol Clin* 2006; 24: 418-425.

Araujo Meléndez, J* Espinoza Martínez, JE** Ruiz González, JM* Fragoso Morales, LE**

Bacteremia nosocomial: descripción situacional en un hospital de tercer nivel

Nosocomial bacteremia: descriptive study in a tertiary level hospital

Fecha de aceptación: iunio 2015

Resumen

ANTECEDENTES. Las infecciones nosocomiales (IN) afectan tanto a los países desarrollados como a los carentes de recursos. De acuerdo con la OMS, estas patologías se encuentran entre las principales causas de defunción y aumento de la morbilidad en los pacientes hospitalizados.

MATERIAL Y MÉTODO. Estudio descriptivo y retrospectivo, en pacientes con bacteremia primaria o secundaria. El estudio incluyó pacientes con dos años de vigilancia. Se reportan los datos en frecuencias y porcentajes.

RESULTADOS. Se incluyeron 62 pacientes con bacteremia. La mayor frecuencia fue en el grupo de 35 a 54 años, con 27 pacientes (43.56 %), sin predominio en relación con el sexo. En 43 pacientes (69.35 %) se realizaron procedimientos invasivos, de ellos 35 (81.39 %) presentaron una bacteremia primaria. Acinetobacter baumannii fue el patógeno aislado con mayor frecuencia (40.89 %), principalmente en bacteremias primarias (38 %), seguido de Escherichia coli en 27.87 % sobre todo en IVU. Se registraron 18 decesos (29.03 %) en el tiempo de estudio, de los cuales, 7 (38 %) fueron atribuibles al proceso infeccioso. El 56.36 % de los aislamientos de A. baumannii fueron panresistentes.

CONCLUSIONES. Se determinó que los factores que contribuyen con la infección por A. baumannii son: la edad, el uso de métodos invasivos y la terapia previa con antibióticos.

Palabras clave: bacteremia primaria, Acinetobacter baumannii, factores de riesgo, infección nosocomial

Abstract

BACKGROUND. Nosocomial infections (NI) affect both developed and undeveloped countries. According to WHO, these diseases are among the leading causes of death and increased morbidity in hospitalized patients

MATERIAL AND METHOD. Descriptive and retrospective study, in patients with primary or secondary bacteremia. The study included patients over two years of surveillance. Data are reported in frequencies and percentages.

RESULTS. Sixty two patients with bacteremia were included. The highest frequency was in the group of 35 to 54 years with 27 patients (43.56 %), no sex predominance. Invasive procedures were performed in 43 patients (69.35 %), among them, 35 (81.39 %) had a primary bacteremia. Acinetobacter baumannii was the pathogen most frequently isolated (40.89 %), mainly in primary bacteremia (38 %), followed by Escherichia coli in 27.87 % predominantly in IVU. Eighteen deaths (29.03 %) were detected in the study period, of which 7 (38 %) were attributable to infectious process. The 56.36 % of the isolates of A. baumannii were pan resistant.

CONCLUSIONS. It was determined that factors such as age, the use of invasive procedures and previous use of antibiotics contribute to infection by A. baumannii.

Keywords: primary bacteremia, Acinetobacter baumannii, risk factors, nosocomial infection.

* * Facultad de Ciencias Químicas UASLP

Correspondencia: MSP Lilia Esperanza Fragoso Morales

versitaria CP 78210.

Tel.: 8 26 24 29 (directo) Cel. 444 5079909

^{*}Hospital Central "Dr. Ignacio Morones Prieto"/Facultad de Medicina Facultad de Ciencias Químicas. Av. Manuel Nava No. 6, Zona uni-**UASIP**

Introducción

Se define como Infección nosocomial (IN) a la adquirida durante la estancia hospitalaria, que se manifiesta dentro de las 48 a 72 horas después del ingreso del paciente al establecimiento de atención de salud, y que no se encuentra en estado de incubación en el momento del internamiento. 1.2.3

Las IN se relacionan ampliamente con procedimientos que se llevan a cabo en el hospital, sobre todo procedimientos invasivos, por lo que se requieren puntos de control en el análisis de la calidad del servicio y deben estar sujetos a mejora. Además, existen factores asociados a las condiciones fisiopatológicas del paciente como diabetes mellitus, insuficiencia renal, inmunosupresión, entre otros, que constituyen focos de riesgo para el desarrollo dela infección.^{4,5}

Algunas de las infecciones más frecuentes en los hospitales de segundo nivel de atención son las relacionadas con las vías urinarias, neumonías, bacteremias e infección de herida quirúrgica. Las bacteremias se presentan sobre todo en unidades de cuidados intensivos donde la prevalencia es de aproximadamente 6 a 12 % y son causadas principalmente por bacterias grampositivas; sin embargo, en la sepsis severa es más común aislar microorganismos gramnegativos tales como *Acinetobacter baumannii* que representa la primera causa de neumonía asociada a ventilador mecánico y la tercera etiología en cuanto a bacteremia.^{6,7}

Acinetobacter sp. es reconocido como un patógeno con un papel significativo que no solo es causante de bacteremia sino también de otras infecciones intrahospitalarias como meningitis secundaria, infección en vías urinarias y tejidos blandos o peritonitis, y debe su importancia epidemiológica sobre todo a dos factores: por una parte tiene una extraordinaria capacidad para generar resistencia hacia los antibióticos y lo hace de manera rápida, por otra, es un microorganismo adaptable al medio donde habita y por ello la persona colonizada o infectada es el principal reservorio, lo cual convierte incluso al personal sanitario en un medio de transmisión. Los propios espacios hospitalarios pueden representar un riesgo de mantener las cepas infecciosas en el ambiente, por lo que la limpieza y desinfección de las habitaciones y anexos de los hospitales representan un punto importante en cuanto al control de la infección y la detención en la aparición de un nuevo brote infeccioso.6,8,9,10 Controlar la incidencia de IN en el hospital requiere la intervención en diversos factores que pueden o no estar bajo el control de la unidad de salud. La falta de control, y por tanto la alta frecuencia de IN las convierte en un problema grave para la Salud Pública por sus elevadas tasas de morbilidad y mortalidad.^{2,4,11}

De acuerdo con una encuesta realizada por la OMS en hospitales de diferentes países (incluyendo regiones de Europa, el Mediterráneo oriental, el sudoeste asiático y el Pacífico occidental) de los pacientes hospitalizados, un promedio de 8.7 % presentó una IN, mientras que en Estados Unidos se estima una incidencia de 3 a 5 %. En México, a partir de datos obtenidos en hospitales de referencia y algunos de segundo nivel, se asume que de 6 600 000 pacientes hospitalizados, 600 000 a 750 000 presentaron IN, lo que representa un promedio de 10 a 15 %, lo cual implica que entre 30 000 y 45 000 pacientes mueren cada año con una IN asociada.^{2,5}

Material y método

Se presenta un estudio descriptivo, retrospectivo, de pacientes que cursaron con bacteremia primaria o secundaria. El estudio incluyó los pacientes con dos años de vigilancia. Se describen variables demográficas, empleo de métodos invasivos, uso de antibióticos previos, antibióticos de amplio espectro, deceso, entre otros, de acuerdo con el tipo de bacteremia. Por sus características, se hizo énfasis en los casos de infección por *Acinetobacter baumannii*. Se reportan los datos en frecuencias y porcentajes.

Resultados

Se incluyeron en el estudio los datos de 62 pacientes que fueron diagnosticados con bacteremia como infección intrahospitalaria; se observó una mayor frecuencia en el grupo de 35 a 54 años con 27 pacientes (43.56 %), de los cuales, 14 (51.85 %) fueron mujeres. Cuadro 1.

Cuadro 1
Edades y sexo de los pacientes que presentaron
bacteremia como infección nosocomial

Grupos de edad	n	%
15 a 19	3	4.83
20 a 24	5	8.06
25 a 29	5	8.06
30 a 34	4	6.45
35 a 39	6	9.68
40 a 44	9	14.52
45 a 49	6	9.68
50 a 54	6	9.68
55 a 59	4	6.45
60 a 64	2	3.23
65 a 69	3	4.84
70 y más	9	14.52
Total	62	100
Sexo		
Masculino	28	45.16
Femenino	33	53.23
Sin dato	1	1.61
Total	62	100

Considerando los servicios en que fueron atendidos, 16 pacientes (25.8 %) pertenecían a la Unidad de Terapia intensiva, de los cuales 9 (56.25 %) tenían como diagnóstico bacteremia de origen primario, igual a 6 pacientes (75 %) del área de Medicina Interna de Hombres; 7 pacientes (53.8 %) del área de Medicina de Mujeres, presentaron bacteremia secundaria. Cuadro 2.

De acuerdo con los factores relacionados con el tipo de bacteremia, se realizaron procedimientos invasivos en 43 pacientes (69.35 %) de los cuales, 35 (81.39 %) presentaron una bacteremia primaria; 28 pacientes con catéter venoso central presentaron bacteremia, en 27 (96.42 %), fue primaria; 7 pacientes portaron sonda de Foley, en el 100 % el tipo de bacteremia fue secundaria a la infección de las vías urinarias. Cuadro 2. Sólo 11 pacientes que presentaron infección no habían recibido antibióticos previos.

Cuadro 2
Tipo de servicio, factores de riesgo y punto de origen
de la bacteriemia como infección nosocomial

Servicio	n	%
Cirugía de mujeres	12	19.35
Cirugía de hombres	10	16.14
Ginecología y obstetricia	1	1.61
Medicina hombres	8	12.9
Medicina mujeres	13	20.97
Terapia cardiovascular	1	1.61
Unidad de quemados	1	1.61
Unidad de terapia intensiva	16	25.81
Total	62	100
Punto de origen de la bacteremia		
Primaria	36	58.06
Secundaria	26	41.94
Total	62	100
Factores de riesgo		
Relacionados al paciente	19	30.65
Relacionados con el método invasivo	43	69.35
Total	62	100

La inmunosupresión fue uno de los factores relacionados con más frecuencia, presente en 34 (54.83 %) pacientes. Además, 21 pacientes fueron sometidos a cirugía abdominal (33.87 %), de los cuales 12 (57.14 %) presentaron bacteremia primaria. Cuadro 3.

El patógeno aislado con mayor frecuencia fue *Acinetobacter baumannii* con un 40.89 % (25) principalmente de bacteremias primarias, seguido de *Escherichia coli* en 27.87 % (17) preponderantemente en bacteremias secundarias, el 50 % de las cuales (5) se encontraron asociadas a sonda de Foley. Las infecciones monomicrobianas fueron las más frecuentes, sin embargo, en seis casos (9.67 %), la infección fue atribuible a dos patógenos. Los pacientes con infecciones por *Acinetobacter baumannii* recibieron en forma más frecuente antibióticos de amplio espectro y asociaciones de tres o más antibióticos, predominaron las mujeres, así como los pacientes en el rango de edad de 35 a 54 años y en aquellos ingresados en Terapia Intensiva.

Cuadro 3
Tipo de atención, estado y evolución de los pacientes
que presentaron bacteremia como
infección nosocomial

Atención	n	%
Quirúrgica	34	54.84
No quirúrgica	28	45.16
Total	62	100
Estado del paciente		
Inmunosuprimido	34	54.84
No inmunosuprimido	28	45.16
Total	62	100
Evolución		
Favorable	44	70.97
Defunción	18	29.03
Total	62	100

Cuadro 4
Etiología de las bacteremias nosocomiales

Patógeno	Bacteremi	Bacteremia primaria		secundaria	Total		
ratogeno	n	%	n	%	n	%	
A. baumannii	14	37.84	11	44	25	40.32	
Acinetobacter haemolyticus	1	2.7			1	1.61	
Citrobacter brakii	3	8.11			3	4.84	
E. aerógenes	1	2.7			1	1.61	
E. cloacae	3	8.11			3	4.84	
Escherichia coli	7	18.92	10	40	17	27.42	
P. aeruginosa	5	13.51	4	16	9	14.52	
S. maltophilia	2	5.41			2	3.23	
K. pneumoniae	1	2.7			1	1.61	
Total	37	100	25	100	62	100	

De los aislamientos clínicos de *A. baumannii* el 56.36 % (14) fueron panresistentes, el 16 % (4) multirresistentes y 28 %(7) fueron pansusceptibles.

Se observó que aquellos pacientes con neumonía, tuvieron mayor posibilidad de que el proceso infeccioso fuera por *A. baumannii* que por otro patógeno, siendo aún mayor en los que tuvieron ventilación mecánica.

En el tiempo de estudio se presentaron 18 decesos (29.03 %), 7 (38 %) de los cuales fueron atribuibles al proceso infeccioso y 11 (61.11 %) a otras complicaciones. Fue mayor la proporción de pacientes que presentaron infección por *Acinetobacter baumannii* y que fallecieron.

Discusión

De acuerdo con Flores-Siccha, en la mayoría de los estudios realizados a nivel mundial se menciona como factores predisponente para padecer una infección nosocomial una edad mayor a 60 años, sin embargo y como se observó en este estudio, la edad en que se presentaron más casos de infecciones nosocomiales fue en el rango de 35 a 54 años, considerándose incluso este rango de edad como un factor asociado para presentar infección causada por *Acinetobacter baumannii.*4

Según Cisneros JM y cols. uno de los puntos de origen más comunes de una bacteremia cuyo agente causal sea *A. baumannii* es la utilización de catéter, sin embargo, aun cuando es elevada la frecuencia de portación de un catéter, en este trabajo no fue predominante. Se ha considerado a *Acinetobacter* como microorganismo de baja virulencia, excepto en pacientes con condiciones críticas o inmunosuprimidos; en este estudio predominaron los pacientes en estado crítico. Uno de los predictores de mortalidad en las infecciones nosocomiales por *A. baumannii* es la exposición del paciente a un proceso quirúrgico, lo que coincide en este reporte pues 20 % de los decesos estuvieron relacionados con la infección por este patógeno y a procesos quirúrgicos. La neumonía es una de las manifestaciones clínicas más frecuentes de la infección por *A. baumannii* asociada a la ventilación mecánica, esta maniobra incrementa en forma significativa el riesgo. 10

Considerando lo dicho por Hernández-Torres, ¹⁰ la permanencia de una persona en la Unidad de Cuidados intensivos está relacionada con el desarrollo de multifarmacorresistencia por parte de *A. baumannii*, por el sobreuso de antibióticos; esto puede observarse en el estudio pues 5 de los 8 casos (62.5 %) de infección nosocomial por *A. baumannii* en esa área de servicio resultaron ser multifarmacorresistentes.

Se requiere una mayor participación en la aplicación de medidas de prevención de infecciones adquiridas en el hospital, para abatir la frecuencia de patógenos como *Acinetobacter baumannii* que reflejan un uso inadecuado de antibióticos y bajo apego a los criterios recomendados en el manejo invasivo de pacientes hospitalizados.

- Cole-Gutiérrez R, Martínez-Mairena J, Cedeño-Cascante T. Incidencia de infecciones intrahospitalarias en el Hospital San Rafael de Alajuela durante el año 2002. Rev Cost de Cien Med 2006; 27:87-91.
- Romero-Vázquez A, Martínez-Hernández G, Flores-Barrientos O I, Vázquez-Rodríguez A G. Perfil epidemiológico de las infecciones nosocomiales en un hospital de alta especialidad del sureste mexicano. Salud en Tabasco 2007; 13:618-624.
- Organización Mundial de la Salud. Prevención de las infecciones nosocomiales. Guía práctica 2ª edición 2002. Disponible en http://www.who.int/csr/resources/publications/drugresist/en/PISpanish3.pdf. Fecha de consulta 11 de marzo del 2014.
- 4. Flores-Siccha M K, Pérez-Bazán L M, Trelles-Guzmán M G, Málaga-Rodríguez G, Loza-Munariz C, Tapia-Egoavil E. Infección urinaria intrahospitalaria en los servicios de hospitalización de Medicina de un Hospital General. Rev Med Hered 2008; 19:46-52.
- Ponce-de León S, Rangel-Frausto M S, Elías-López J I, Romero-Oliveros C, Huertas-Jiménez M. Infecciones nosocomiales: tendencias seculares de un programa de control en México. Salud Pública Mex 1999; 41;S5-S11.

- Diomedi A. Infecciones por Acinetobacter baumannii pan-resistente. Consideraciones epidemiológicas y de manejo antimicrobiano actualizado. Rev Chil Infect 2005; 22: 298-320.
- Aguirre-Avalos G, Mijangos-Méndez J C, Amaya-Tapia G. Bacteremia por Acinetobacter baumannii. Rev Med Inst Mex Seguro Soc 2010; 48:625-634.
- 8. Bergogne-Bérézin E, Towner K J. *Acinetobacter spp.* As nosocomial pathogens: microbiological, clinical, and epidemiological features. *Clin Micr Rev* 1996; 9:148-165.
- Cisneros J M, Pachón J. Acinetobacter baumannii: un patógenos nosocomial de difícil control. Enferm Infecc Microbiol Clin 2003; 21:221-223.
- Hernández-Torres A, García-Vázquez E, Yagüe G, Gómez-Gómez J. Acinetobacter baumannii multirresistente: situación clínica actual y nuevas perspectivas. Rev Esp Quimioter 2010; 23:12-19.
- Secretaría de Salud. Medición de la prevalencia de infecciones nosocomiales en hospitales generales de las principales instituciones públicas de salud. México D.F., 11 de noviembre, 2011.

Encefalitis y enfermedad cutánea neonatal por Virus Herpes Simple tipo 2. Reporte de un caso

Gil Veloz, M. *
Castro Macías, I.*
Vázquez-Briseño, .J*
Castellanos Martínez, J. M.*
Carrales Cuellar, R. *
Tovar Sánchez, J.A.*
Solórzano Santos, F.**

Neonatal encephalitis and skin disease by Herpes simplex virus type 2. Case report

Fecha de aceptación: febrero 2015

Resumen

La infección neonatal por virus herpes simple se considera de baja frecuencia. Hay tres formas de presentación clínica: con afección de piel, ojos, mucosas del sistema nervioso central y enfermedad diseminada. Se presenta el caso de un paciente con enfermedad cutánea asociada a infección de sistema nervioso central. **Palabras clave:** recién nacido, herpes simple, encefalitis herpética.

Abstract

Neonatal herpes simplex virus infection is considered with low frequency. There are three clinical presentations: with involvement of skin, eyes, mucous membranes, with involvement of the central nervous system and disseminated disease.

A case for a patient with skin disease associated with central nervous system infection is presented. **Keywords:** *newborn, herpes simplex, herpes encephalitis.*

Introducción

La infección neonatal (infección diagnosticada dentro de los primeros 28 días después del nacimiento) por virus herpes simple (VHS) se calcula en 1/3200 nacimientos en Norteamérica y 1 1/16500 nacimientos en Canadá. Hay tres formas de presentación clínica: con afección de piel, ojos, mucosas en el 45 %, del sistema nervioso central (SNC) en el 30 % y enfermedad diseminada (ED) en el 25 % de los casos. 1.2 La enfermedad diseminada puede afectar varios sistemas y órganos: SNC, hígado, pulmón, mucosas y piel; un tercio de estos desarrollan afección al SNC. Se reconocen varias forma de adquisición de la infección neonatal, siendo las más importantes: periparto (85 %), posnatal (10 %) e *in útero* (5 %).23

El herpes neonatal a pesar de ser la manifestación más grave de la infección por HSV durante el embarazo y el período perinatal, como no es una enfermedad notificable, conduce a que se desconozca su incidencia precisa en varios países del mundo, y específicamente en México.

En la era pre-antiviral un 50 % de los recién nacidos con enfermedad del SNC murieron durante el primer año de vida. Actualmente, con el uso del aciclovir por vía intrave-

nosa, la mortalidad se ha reducido a menos del 5 %. Las recaídas a pesar del tratamiento se presentan hasta en un 5 % de los pacientes, por lo que existen algunas recomendaciones a seguir, especialmente en aquellos neonatos con mayor riesgo.³

Se presenta el caso de un recién nacido con infección por VHS, que inicia sus manifestaciones en la tercera semana de vida con afectación cutánea en forma simultánea con afección del SNC.

Presentación del caso

Masculino RN, es presentado en la Unidad a los de 22 días de vida. Se informa un cuadro de 6 días de evolución caracterizado por cianosis y crisis convulsivas. Al inicio del padecimiento en forma externa fue tratado con diagnóstico de reflujo gastroesofágico. Al tercer día de evolución se agregan palidez generalizada y lesiones dérmicas vesiculares (figura 1 y 2). Los eventos convulsivos eran persistentes.

Correspondencia: Mariana Gil Veloz

Hospital Regional de Alta Especialidad del Bajío. León, Guanajuato. México.

Dirección electrónica: marianagil3@hotmail.com

^{*}Servicio de Infectopediatría. Hospital Regional de Alta Especialidad del Bajío. León, Guanajuato. México.

^{**}Unidad Médica de Alta Especialidad, Hospital de Pediatría "Dr. Silvestre Frenk", Centro Médico Nacional SXXI, IMSS.

El paciente presentaba distermias, letargia con períodos de irritabilidad, apneas, pérdida de la succión con trastornos de deglución, convulsiones generalizadas. No se encontraron visceromegalias. Se realizan estudios de laboratorio con una biometría hemática sin cambios significativos, el citoquímico del LCR mostraba glucosa 31mg/dl, proteínas 243mg/dl, leucocitos 70 células/campo con predominio de linfocitos. Se realizó electroencefalograma que mostraba daño cortical y subcortical (figura 3). La tomografía axial computada de cráneo mostraba áreas hipodensas bifrontales y temporal izquierda con importante edema transependimario (figura 4). Considerando las características de las lesiones por tomografía se solicitó serología para VHS-2 la cual fue reportada como positiva y una reacción en cadena de la polimerasa (PCR) positiva para VHS-2. La madre refería

no haber padecido alguna sintomatología previa al parto. Se indicaron medidas generales, tratamiento anticonvulsivo y aciclovir a 60 mg/k/día por vía intravenosa, hubo mejoría clínica y de las lesiones dérmicas en las primeras 48 horas, manteniéndose el aciclovir por 28 días. Veinticuatro días después de haber suspendido el antiviral reaparecen las lesiones dérmicas, por lo que se da inicialmente tratamiento y se continúa con profilaxis. Al finalizar las primeras cuatro semanas de tratamiento antiviral el paciente presentaba alteración de la mecánica de deglución, apneas centrales secundarias a encefalopatía y dependencia $\rm O_2$. Un mes después se logra el destete del $\rm O_2$ y recuperación de la succión, cinco meses después aún presentaba datos de alarma neurológica. A pesar de la profilaxis las lesiones dérmicas recidivaron a los 5 meses del cuadro inicial.

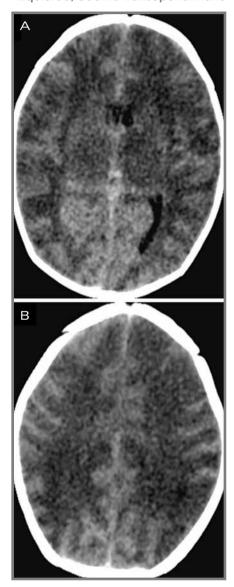

Figura 1 y 2

Figura 3
EEG caracterizado por el ritmo de base lento generalizado de predominio en voltaje

Figura 4
TC con áreas hipodensas bifrontales y temporal izquierda, edema transependimario

Discusión

La prevalencia y la incidencia de la infección por VHS no se conocen a nivel mundial, por lo que expertos de la Organización Mundial de la Salud han hecho algunas estimaciones. En 2012, se calculó que había 417 millones de personas de 15-49 años (rango: 274-678000000) que vivían con la infección por el VHS-2 en todo el mundo (11.3 % prevalencia global), de los cuales 267 millones (60 %) eran mujeres. Se estimó que 19.2 millones de individuos de 15 a 49 años habían sido

infectados en forma reciente. La carga más alta fue en África. Sin embargo, a pesar de la prevalencia más baja, las regiones del sudoeste asiático v del Pacífico occidental también contribuyeron con un gran número de casos, considerando sus grandes tamaños de población.4 La información epidemiológica en todos los países es aproximada y en especial de la infección neonatal se desconoce su magnitud debido a problemas en el diagnóstico y la falta de reporte obligatorio. Entre las diversas formas de expresión clínica, el paciente de este reporte, presentó una forma de enfermedad cutánea asociada a encefalitis. Se conoce que los pacientes con enfermedad cutánea pueden seguir presentando las lesiones vesiculosas a pesar del tratamiento y que las recurrencias se observan en un porcentaje al suspenderlo, como fue en este caso. Lo anterior conduce a la necesidad de dar manejo profiláctico. El fenómeno de las manifestaciones cutáneas recidivantes es más común cuando hay afección del sistema nervioso central.

La encefalitis neonatal por lo general se manifiesta entre los días 15 y 19 de vida, representando un gran riesgo de daño neurológico, el pronóstico puede mejorar si el tratamiento se inicia en los primeros días (el desarrollo neurológico es normal al año de edad en el 83 % de los RN con ED y un 31 % con enfermedad del SNC).

El diagnóstico de la infección neonatal por VHS es difícil, ya que entre el 70 y el 85 % de los casos de RN infectados son hijos de madres sin historia previa de herpes genital, sin sintomatología en el momento del parto y sin historia del mismo en la pareja. Los estudios de laboratorio como la biometría hemática, suelen tener mínimas alteraciones aun en los casos de enfermedad diseminada y los resultados positivos tanto en suero como LCR en búsqueda de antígenos por PCR son bajos.^{5,6}

No hay duda que la piedra angular de tratamiento de la infección neonatal por VHS es el aciclovir, sin embargo, en la forma cutánea con o sin afectación del sistema nervioso central no hay un consenso sobre la utilidad del manejo profiláctico a largo plazo. Existe un estudio controlado en el que se apoya ésta decisión7 donde se evaluó el efecto de la administración de aciclovir por vía oral (300mg/m²/dosis) administrado dos o tres veces al día durante seis meses a un grupo de RN tratados por enfermedad cutánea con y sin afectación de SNC. La profilaxis tuvo influencia en un menor número de recurrencias y un mejor desarrollo neurológico en aquellos con afectación del SNC. Por contrapartida, la mitad de los pacientes tratados desarrollaron neutropenia con recuentos de neutrófilos inferiores a 1000 y en un paciente se demostró la aparición de una cepa de VHS resistente al aciclovir. Dada la baja experiencia y pocos estudios controlados, no se recomienda de forma absoluta y rutinaria el empleo de profilaxis post-tratamiento en los neonatos que sobreviven a una infección herpética.

La infección neonatal por VHS es todo un reto diagnóstico para el pediatra y el neonatólogo; dadas las diversas formas clínicas se requiere una buena sospecha para lograr un diagnóstico preciso.

- Cherpes TL, Matthews DB, Maryak SA. Neonatal herpes simplex virus infection. Clin Obstet Gynecol. 2012; 55:938-944.
- Allen UD, Robinson JL; Canadian Paediatric Society, Infectious Diseases and Immunization Committee. Prevention and management of neonatal herpes simplex virus infections. *Paediatr Child Health*. 2014;19:201-12.
- James SH, Kimberlin DW. Neonatal herpes simplex virus infection: epidemiology and treatment. Clin Perinatol. 2015; 42:47-59
- Looker KJ, Magaret AS, Turner KM, Vickerman P, Gottlieb SL, Newman LM. Global estimates of prevalent and incident herpes simplex virus type 2 infections in 2012. *PLoS One*. 2015;10:e114989.
- Kotzbauer D, Frank G, Dong W, Shore S. Clinical and laboratory characteristics of disseminated herpes simplex virus infection in neonates. *Hosp Pediatr.* 2014;4(3):167-171
- White JC, Magee SR. Neonatal herpes infection: case report and discussion. J Am Board Fam Med. 2011 Nov-Dec;24(6):758-762.
- 7. Kimberlin DW, Whitley RJ, Wan W, Powell DA, Storch G, Ahmed A, et al; National Institute of Allergy and Infectious Diseases Collaborative Antiviral Study Group. Oral acyclovir suppression and neurodevelopment after neonatal herpes. N Engl J Med 2011;365:1284-1292.